
Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 201

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

2.5.2.1 MAC data service requirements

In order to transmit this command using the MAC data service, specified in [B1], the following information
shall be included in the MAC frame header.

The destination MAC address and PAN identifier shall be set to the network address and PAN identifier,
respectively, of the first hop in the path back to the originator of the corresponding route request command
frame. The destination PAN identifier shall be the same as the PAN identifier of the originator.

The source MAC address and PAN identifier shall be set to the address and PAN identifier of the device
sending the route reply command, which may or may not be the device from which the command originated.

The frame control field shall be set to specify that the frame is a MAC data frame with MAC security
disabled, since any secured frame originating from the NWK layer shall use NWK layer security. The
transmission options shall be set to require acknowledgment. The addressing mode and intra-PAN flags
shall be set to support the addressing fields described here.

2.5.2.2 NWK header fields

In order for this route reply to reach its destination and for the route discovery process to complete correctly,
the following information must be provided.

The frame type subfield of the NWK frame control field should be set to indicate that this frame is a NWK
layer command frame.

The destination address field in the NWK header shall be set to the network address of the first hop in the
path back to the originator of the corresponding route request.

The source address in the NWK header shall be set to the NWK 16-bit network address of the device that is
transmitting the frame.

2.5.2.3 NWK payload fields

The NWK frame payload contains a command identifier field, a command options field, the route request
identifier, originator and responder addresses and an up-to-date summation of the path cost.

The command frame identifier shall contain the value indicating a route reply command frame.

2.5.2.3.1 Command options field

The format of the 8-bit command options field is shown in Figure 43.

Figure 43 Route reply command options field

The route repair sub-field is a single-bit field. It shall have a value of 1 if and only if the route request
command frame is being generated as part of a route repair operation for mesh network topology (see sub-
clause 2.7.3.5.1).

2.5.2.3.2 Route request identifier

The request identifier field shall be set to the request identifier value from the corresponding route request
command frame.

Bit: 0—6 7

Reserved Route repair

ZigBee Specification

202 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

2.5.2.3.3 Originator address

The originator address field shall be 2 octets in length and shall contain the 16-bit network address of the
originator of the route request command frame to which this frame is a reply.

2.5.2.3.4 Responder address

The responder address field shall be 2 octets in length and shall contain the 16-bit network address of the
device for whom the route is being discovered. The value in this field shall always be the same as the value
in the destination address field of the corresponding route request command frame.111

2.5.2.3.5 Path cost

The path cost field is used to sum link cost as the route reply command frame transits the network (see sub-
clause 2.7.3.4.3).

2.5.3 Route error command

A device uses the route error command when it is unable to forward a data frame. The command notifies the
source device of the data frame about the failure in forwarding the frame. The payload of a route error
command shall be formatted as illustrated in Figure 44.

Figure 44 Route error command frame format

2.5.3.1 MAC data service requirements

In order to transmit this command using the MAC data service, specified in [B1], the following information
shall be provided.

The destination MAC address and PAN identifier shall be set to the address and PAN identifier,
respectively, of the first hop in the path back to the source of the data frame that encountered a forwarding
failure.

The source MAC address and PAN identifier shall be set to the address and PAN identifier of the device
sending the route error command.

The frame control field shall be set to specify that the frame is a MAC data frame with MAC security
disabled, since any secured frame originating from the NWK layer shall use NWK layer security. The
implementer shall determine whether an acknowledgment shall be requested. The addressing mode and
intra-PAN flags shall be set to support the addressing fields described here.

2.5.3.2 NWK header fields

In order to send the route error command frame, the destination address field in the NWK header shall be set
to the same value as the source address field of the data frame that encountered a forwarding failure.

111CCB Comment #132

Octets: 1 1 2

Command
frame identifier

(see
Table 129)

Error code Destination
address

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 203

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The source address in the NWK header shall be set to the address of the device sending the route error
command.

2.5.3.3 Error code

The error code shall be set to one of the non-reserved values shown in Table 130.

2.5.3.4 Destination address

The destination address is 2 octets in length and shall contain the destination address from the data frame
that encountered the forwarding failure.

2.5.4 Leave command

The leave command is used by the NLME to inform the parent and children of a device that it is leaving the
network or else to request that a device leave the network. The payload of the leave command shall be
formatted as shown in Figure 45

Figure 45 Leave command frame format

2.5.4.1 MAC data service requirement

In order to transmit this command using the MAC data service, specified in [B1], the following information
shall be provided.

The destination MAC address and PAN identifier shall be set to the address and PAN identifier,
respectively, of the neighbor device to which the frame is being sent.

The source MAC address and PAN identifier shall be set to the address and PAN identifier of the device
sending the leave command.

The frame control field shall be set to specify that the frame is a MAC data frame with MAC security
disabled, since any secured frame originating from the NWK layer shall use NWK layer security.
Acknowledgment shall be requested. The addressing mode and intra-PAN flags shall be set to support the
addressing fields described here.

Table 130 Error codes for route error command frame
Value Error code

0x00 No route available

0x01 Tree link failure

0x02 Non-tree link failure

0x03 Low battery level

0x04 No routing capacity

0x05 -- 0xff Reserved

Octets: 1 1

Command
frame identifier

(see
Table 129)

Command
options

ZigBee Specification

204 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

2.5.4.2 NWK header fields

In order to send the leave command frame, the destination address field in the NWK header shall be set to
the network address of the neighbor to which the frame is being sent. The source address in the NWK header
shall be set to the address of the device sending the leave command. The radius field in the NWK header
shall be set to 1.

2.5.4.3 Command options

The format of the 8-bit command options field is shown in figure 17.

Figure 46 Leave command options field

2.5.4.3.1 Request/indication sub-field

The request/indication sub-field is a single bit field located at bit 6. If the value of this sub-field is 1 then the
leave command frame is a request for another device to leave the network. If the value of this sub-field is 0
then the leave command frame is an indication that the sending device plans to leave the network.

2.5.4.3.2 Remove children sub-field

The remove children sub-field is a single bit field located at bit 7. If this sub-field has a value of 1 then the
children of the device that is leaving the network will also be removed.112

2.6 Constants and NIB attributes

2.6.1 NWK constants

The constants that define the characteristics of the NWK layer are presented in Table 131.

Bit: 0—5 6 7

Reserved Request/indication Remove children

112CCB Comment #107

Table 131 NWK layer constants
Constant Description Value

nwkcCoordinatorCapable

A Boolean flag indicating whether the
device is capable of becoming the ZigBee
coordinator. A value of 0x00 indicates that
the device is not capable of becoming a
coordinator while a value of 0x01 indi-
cates that the device is capable of
becoming a coordinator.

Set at build time.

nwkcDefaultSecurityLevel The default security level to be used (see
Chapter 3) ENC-MIC-64

nwkcDiscoveryRetryLimit The maximum number of times a route
discovery will be retried. 0x03

nwkcMaxDepth
The maximum depth (minimum number of
logical hops from the ZigBee coordinator)
a device can have.

 0x0fa

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 205

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

nwkcMinHeaderOverhead The minimum number of octets added by
the NWK layer to a NSDU. 0x08b

nwkcProtocolVersion The version of the ZigBee NWK protocol
in the device. 0x01

nwkcRepairThreshold
Maximum number of allowed communica-
tion errors after which the route repair
mechanism is initiated.

0x03

nwkcRouteDiscoveryTime Time duration in milliseconds until a route
discovery expires. 0x2710

nwkcMaxBroadcastJitter The maximum broadcast jitter time mea-
sured in milliseconds. 0x40

nwkcInitialRREQRetries
The number of times the first broadcast
transmission of a route request command
frame is retried.

0x03

nwkcRREQRetries

The number of times the broadcast trans-
mission of a route request command
frame is retried on relay by an intermedi-
ate ZigBee router or ZigBee coordinator.

0x02

nwkcRREQRetryInterval
The number of milliseconds between
retries of a broadcast route request com-
mand frame.

0xfe

nwkcMinRREQJitter
The minimum jitter, in 2 millisecond slots,
for broadcast retransmission of a route
request command frame.

0x01

nwkcMaxRREQJitter
The maximum jitter, in 2 millisecond slots,
for broadcast retransmission of a route
request command frame.

0x40

aCCB Comment #229
bCCB Comment #366

Table 131 NWK layer constants

ZigBee Specification

206 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

2.6.2 NWK information base

The NWK information base (NIB) comprises the attributes required to manage the NWK layer of a device.
Each of these attributes can be read or written using the NLME-GET.request and NLME-SET.request
primitives, respectively. The attributes of the NIB are presented in Table 132.

Table 132 NWK IB attributesa

Attribute Id Type Range Description Default

nwkSequenceNumber 0x81 Integer 0x00-0xff

A sequence number
used to identify outgoing
frames (see sub-
clause 2.7.2)b

Random
value from
within the

range.

nwkPassiveAckTimeout 0x82 Integer 0x00-0x0a

The maximum time
duration in seconds
allowed for the parent
and all child devices to
retransmit a broadcast
message (passive
acknowledgment time-
out).

0x03

nwkMaxBroadcastRetries 0x83 Integer 0x00-0x5

The maximum number
of retries allowed after a
broadcast transmission
failure.

0x03

nwkMaxChildren 0x84 Integer 0x00 – 0xff

The number of children
a device is allowed to
have on its current net-
work.

0x07

nwkMaxDepth 0x85 Integer 0x01- nwkc-
MaxDepth

The depth a device can
have. 0x05

nwkMaxRouters 0x86 Integer 0x01-0xff

The number of routers
any one device is
allowed to have as chil-
dren.

This value is determined
by the ZigBee coordina-
tor for all devices in the
network.

0x05

nwkNeighborTable 0x87 Set Variable
The current set of neigh-
bor table entries in the
device (see Table 133).

Null set

nwkNetworkBroadcastDeliv-
eryTime 0x88 Integer

(nwkPassiveAck-
Timeout * nwk-

BroadcastRetries
) – 0xff

Time duration in sec-
onds that a broadcast
message needs to
encompass the entire
network.

nwkPas-
siveAck-
Timeout *
nwkBroad-

castRe-
tries

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 207

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

nwkReportConstantCost 0x89 Integer 0x00-0x01

If this is set to zero, the
NWK layer shall calcu-
late link cost from all
neighbor nodes using
the LQI values reported
by the MAC layer. Oth-
erwise it shall report a
constant value

0x00

nwkRouteDiscoveryRetries-
Permitted 0cx8a Integer 0x00-x03

The number of retries
allowed after an unsuc-
cessful route request.

nwkcDis-
coveryRe-

tryLimit

nwkRouteTable 0x8b Set Variable
The current set of rout-
ing table entries in the
device (see Table 135).

Null set

nwkSymLink 0x8e Boolean TRUE or FALSE

The current route sym-
metry setting:

TRUE means that
routes are considers to
be comprised of sym-
metric links. Backward
and forward routes are
created during one route
discovery and they are
identical.

FALSE indicates that
routes are not consider
to be comprised of sym-
metric links. Only the
forward route is stored
during route discovery

FALSE

nwkCapabilityInformation 0x8f Bit vec-
tor See Table 112

This field shall contain
the capability device
capability information
established at network
joining time.

0x00

nwkUseTreeAddrAlloc 0x90 Boolean TRUE or FALSE

A flag that determines
whether the NWK layer
should use the default
distributed address allo-
cation scheme or allow
the next higher layer to
define a block of
addresses for the NWK
layer to allocate to its
children:

TRUE = use distributed
address allocation.

FALSE = allow the next
higher layer to define
address allocation.

TRUE

Table 132 NWK IB attributesa

ZigBee Specification

208 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

nwkUseTreeRouting 0x91 Boolean TRUE or FALSE

A flag that determines
whether the NWK layer
should assume the abil-
ity to use hierarchical
routing:

TRUE = assume the
ability to use hierarchical
routing.

FALSE = never use hier-
archical routing.

TRUE

nwkNextAddress 0x92 Integer 0x0000 - 0xfffd

The next network
address that will be
assigned to a device
requesting association.
This value shall be
incremented by nwkAd-
dressIncrement every
time an address is
assigned.

0x0000

nwkAvailableAddresses 0x93 Integer 0x0000 - 0xfffd

The size of remaining
block of addresses to be
assigned. This value will
be decremented by 1
every time an address is
assigned. When this
attribute has a value of
0, no more associations
may be accepted.

0x0000

nwkAddressIncrement 0x94 Integer 0x0000 - 0xfffd

The amount by which
nwkNextAddress is
incremented each time
an address is assigned.

0x0001

nwkTransactionPersisten-
ceTime 0x95 Integer 0x0000-0xffff

The maximum time (in
superframe periods) that
a transaction is stored
by a coordinator and
indicated in its beacon.
This attribute reflects the
value of the MAC PIB
attribute macTransac-
tionPersistenceTime
(see [B1]) and any
changes made by the
higher layer will be
reflected in the MAC PIB
attribute value as well.

0x01f4d

aCCB Comment #120
bCCB Comment #111
cCCB Comment #115
dCCB Comment #252

Table 132 NWK IB attributesa

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 209

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

2.7 Functional description

2.7.1 Network and device maintenance

All ZigBee devices shall provide the following functionality:

— Join a network.

— Leave a network.

Both ZigBee coordinators and routers shall provide the following additional functionality:

— Permit devices to join the network using the following:

— Association indications from the MAC.

— Explicit join requests from the application.

— Permit devices to leave the network using the following:

— Disassociation indications from the MAC.

— Explicit leave requests from the application.

— Participate in assignment of logical network addresses.

— Maintain a list of neighboring devices.

ZigBee coordinators shall provide functionality to establish a new network.

2.7.1.1 Establishing a new network

The procedure to establish a new network is initiated through the use of the NLME-NETWORK-
FORMATION.request primitive. Only devices that are ZigBee coordinator capable and not currently joined
to a network shall attempt to establish a new network. If this procedure is initiated on any other device, the
NLME shall terminate the procedure and notify the next higher layer of the illegal request. This is achieved
by issuing the NLME-NETWORK-FORMATION.confirm primitive with the Status parameter set to
INVALID_REQUEST.

When this procedure is initiated, the NLME shall first request that the MAC sub-layer perform an energy
detection scan over either a specified set of channels or, by default, the complete set of available channels, as
dictated by the PHY layer [B1], to search for possible interferers. A channel scan is initiated by issuing the
MLME-SCAN.request primitive, with the ScanType parameter set to energy detection scan, to the MAC
sub-layer and the results are communicated back via the MLME-SCAN.confirm primitive.

On receipt of the results from a successful energy detection scan, the NLME shall order the channels
according to increasing energy measurement and discard those channels whose energy levels are beyond an
acceptable level. The choice of an acceptable energy level is left to the implementation. The NLME shall
then perform an active scan, by issuing the MLME-SCAN.request primitive with a ScanType parameter set
to active scan and ChannelList set to the list of acceptable channels to search for other ZigBee devices. To
determine the best channel on which to establish a new network, the NLME shall review the list of returned
PAN descriptors and find the first channel with the lowest number of existing networks, favoring a channel
with no detected networks.

If no suitable channel is found, the NLME shall terminate the procedure and notify the next higher layer of
the startup failure. This is achieved by issuing the NLME-NETWORK-FORMATION.confirm primitive
with the Status parameter set to STARTUP_FAILURE.

ZigBee Specification

210 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

If a suitable channel is found, the NLME shall select a PAN identifier for the new network. To do this, check
if the optional PANId parameter was specified in the NLME-NETWORK-FORMATION.request was
specified. If present and there is no conflict with existing PANIds this value will become the new network’s
PANId. Otherwise the device shall choose a random PAN identifier such that it is not the broadcast PAN
identifier (0xffff) and it is unique amongst the networks found on the selected channel. Additionally, the
PAN identifier shall be less than or equal to 0x3fff as the two most significant bits of the 16-bit PAN
identifier are reserved for future use. Once the NLME makes its choice, it shall set the macPANID attribute
in the MAC sub-layer to this value by issuing the MLME-SET.request primitive.

If no unique PAN identifier can be chosen, the NLME shall terminate the procedure and notify the next
higher layer of the startup failure by issuing the NLME-NETWORK-FORMATION.confirm primitive with
the Status parameter set to STARTUP_FAILURE.

Once a PAN identifier is selected, the NLME shall select a 16-bit network address equal to 0x0000 and set
the macShortAddress PIB attribute in the MAC sub-layer so that it is equal to the selected network address.

Once a network address is selected, the NLME shall begin operation of the new PAN by issuing the MLME-
START.request primitive to the MAC sub-layer. The parameters of the MLME-START.request primitive
shall be set according to those passed in the NLME-NETWORK-FORMATION.request, the results of the
channel scan, and the chosen PAN identifier. The status of the PAN startup is communicated back via the
MLME-START.confirm primitive.

On receipt of the status of the PAN startup, the NLME shall inform the next higher layer of the status of its
request to initialize the ZigBee coordinator. This is achieved by issuing the NLME-NETWORK-
FORMATION.confirm primitive with the Status parameter set to that returned in the MLME-
START.confirm from the MAC sub-layer.

The procedure to successfully start a new network is illustrated in the message sequence chart (MSC) shown
in Figure 47.

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 211

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 47 Establishing a new network

2.7.1.2 Permitting devices to join a network

The procedure for permitting devices to join a network is initiated through the NLME-PERMIT-
JOINING.request primitive. Only devices that re either the ZigBee coordinator or a ZigBee router shall
attempt to permit devices to join the network. If this procedure is initiated on any other device, the NLME
shall terminate the procedure.

When this procedure is initiated with the PermitDuration parameter set to 0x00, the NLME shall set the
macAssociationPermit PIB attribute in the MAC sub-layer to FALSE. A MAC sub-layer attribute setting is
initiated by issuing the MLME-SET.request primitive.

When this procedure is initiated with the PermitDuration parameter set to a value between 0x01 and 0xfe,
the NLME shall set the macAssociationPermit PIB attribute in the MAC sub-layer to TRUE. The NLME
shall then start a timer to expire after the specified duration. On expiry of this timer, the NLME shall set the
macAssociationPermit PIB attribute in the MAC sub-layer to FALSE.

When this procedure is initiated with the PermitDuration parameter set to 0xff, the NLME shall set the
macAssociationPermit PIB attribute in the MAC sub-layer to TRUE for an unlimited amount of time, unless
another NLME-PERMIT-JOINING.request primitive is issued.

NLME-NETWORK-
FORMATION.request

MLME-
SCAN.request

MLME-
SCAN.confirm

NLME-NETWORK-
FORMATION.confirm

MLME-
START.request

MLME-
START.confirm

Perform energy
detection scan

Select channel, PAN ID
and logical address MLME-

SET.request

MLME-
SET.confirm

ZigBee Coord.
APL

ZigBee Coord.
NWK

ZigBee Coord.
MAC

MLME-
SCAN.request

MLME-
SCAN.confirm

Perform active scan

ZigBee Specification

212 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The procedure for permitting devices to join a network is illustrated in the MSC shown in Figure 48.

Figure 48 Permitting devices to join a network

2.7.1.3 Joining a network

A parent-child relationship is formed when a device having membership in the network allows a new device
to join. The new device becomes the child, while the first device becomes the parent. A child can be added
to a network in the following two ways: the child can join the network using the MAC layer association
procedure or the child can be added to the network directly by a previously designated parent device.

2.7.1.3.1 Joining a network through association

This sub-clause specifies the procedure a device (child) shall follow to join a network, as well as the
procedure a ZigBee coordinator or router (parent) shall follow upon receipt of a join request. Any device
may accept a join request from a new device so long as it has the necessary physical capabilities and the
available network address space. Only a ZigBee coordinator or a router is physically capable of accepting a
join request, while an end device is not.

2.7.1.3.1.1 Child procedure

The procedure for joining a network using the MAC layer association procedure shall be initiated by issuing
the NLME-NETWORK-DISCOVERY.request primitive with the ScanChannels parameter set to indicate
which channels are to be scanned for networks and the ScanDuration parameter set to indicate the length of
time to be spent scanning each channel. Upon receipt of this primitive, the NWK layer shall issue an
MLME-SCAN.request primitive asking the MAC sub-layer to perform a passive or113 active scan.

Every beacon frame received during the scan having a non-zero length payload shall cause the MLME-
BEACON-NOTIFY.indication primitive to be issued from the MAC sub-layer of the scanning device to its
NLME. This primitive includes information such as the addressing information of the beaconing device,
whether it is permitting association and the beacon payload (see [B1] for the complete list of parameters).
The NLME of the scanning device shall check the protocol ID field in the beacon payload and verify that it
matches the ZigBee protocol identifier. If not, the beacon is ignored. Othewise, the device shall copy the

113CCB Comment #117

NLME-
PERMIT-JOINING.reques MLME-

SET.reques

MLME-
SET.confirm

MLME-
SET.reques

MLME-
SET.confirm

Duration to permit
joining

Device

APL

Device

NWK

Device

MAC

NLME-
PERMIT-JOINING.confirm

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 213

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

relevant information from each received beacon (see Figure 63 for the structure of the beacon payload) into
its neighbor table (see Table 133 for the contents of a neighbor table entry).

Once the MAC sub-layer signals the completion of the scan by issuing the MLME-SCAN.confirm primitive
to the NLME, the NWK layer shall issue the NLME-NETWORK-DISCOVERY.confirm primitive
containing a description of each network that was heard. Every network description contains the ZigBee
version, stack profile, PAN ID, logical channel114, and information on whether it is permitting joining (see
Table 104).

Upon receipt of the NLME-NETWORK-DISCOVERY.confirm primitive, the next higher layer is informed
of the networks present in the neighborhood. The next higher layer may choose to redo the network
discovery to discover more networks or for other reasons. If not, it shall choose a network to join from the
discovered networks. It shall then issue the NLME-JOIN.request with the PANId parameter set to the PAN
identifier of the desired network, the RejoinNetwork parameter set to FALSE and the JoinAsRouter
parameter set to indicate whether the device wants to join as a routing device.

Only those devices that are not already joined to a network shall initiate the join procedure. If any other
device initiates this procedure, the NLME shall terminate the procedure and notify the next higher layer of
the illegal request by issuing the NLME-JOIN.confirm primitive with the Status parameter set to
INVALID_REQUEST.

For a device that is not already joined to a network, the NLME-JOIN.request primitive shall cause the NWK
layer to search its neighbor table for a suitable parent device. A suitable parent device shall have the desired
PAN ID and shall be permitting association and shall have a link cost (see sub-clause 2.7.3.1 for details on
link cost) of at most 3. It shall also have the potential parent field set to one, if that field is present in the
neighbor table entry.

If the neighbor table contains no devices that are suitable parents, the NLME shall respond with an NLME-
JOIN-CONFIRM with a status parameter of NOT_PERMITTED. If the neighbor table has more than one
device that could be a suitable parent, the device which is at a minimum depth from the ZigBee coordinator
shall be chosen. If more than device has a minimum depth, the implementation is free to choose from among
them.

Once a suitable parent is identified, the NLME shall issue an MLME-ASSOCIATE.request primitive to the
MAC sub-layer. The addressing parameters in the MLME-ASSOCIATE.request primitive (see Chapter 1)
shall be set to contain the addressing information for the device chosen from the neighbor table. The status
of the association is communicated back to the NLME via the MLME-ASSOCIATE.confirm primitive.

If the attempt to join was unsuccessful, the NWK layer shall receive an MLME-ASSOCIATE.confirm
primitive from the MAC sub-layer with the status parameter indicating the error. If the status parameter
indicates a refusal to permit joining on the part of the neighboring device (i.e., PAN at capacity or PAN
access denied), then the device attempting to join should set the Potential parent bit to zero in the
corresponding neighbor table entry to indicate a failed join attempt. Setting the Potential parent bit to zero
ensures that the NWK layer shall not issue another request to associate to the same neighboring device. The
Potential parent bit should be set to one for every entry in the neighbor table each time an MLME-
SCAN.request primitive is issued.

A join request may also be unsuccessful, if the potential parent is not allowing new routers to associate (e.g.
the max number of routers, nwkMaxRouters may already have associated with the device) and the joining
device has set the JoinAsRouter parameter to TRUE. In this case the NLME-JOIN.confirm primitive will
indicate a status of NOT_PERMITTED. In this case the child device’s application may wish to attempt to
join again but as an end device by issuing another NLME-JOIN.request with the JoinAsRouter parameter set
to FALSE.

114CCB Comment #267

ZigBee Specification

214 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

If the attempt to join was unsuccessful, the NLME shall attempt to find another suitable parent from the
neighbor table. If no such device could be found, the NLME shall issue the NLME-JOIN.confirm primitive
with the Status parameter set to the value returned in the MLME-ASSOCIATE.confirm primitive.

If the attempt to join was unsuccessful and there is a second neighboring device that could be a suitable
parent, the NWK layer shall initiate the MAC sub-layer association procedure with the second device. The
NWK layer shall repeat this procedure until it either joins the PAN successfully or exhausts its options to
join the PAN.

If the device cannot successfully join the PAN specified by the next higher layer, the NLME shall terminate
the procedure by issuing the NLME-JOIN.confirm primitive with the Status parameter set to the value
returned in the last received MLME-ASSOCIATE.confirm primitive. In this case, the device shall not
receive a valid logical address and shall not be permitted to transmit on the network.

If the attempt to join was successful, the MLME-ASSOCIATE.confirm primitive received by the NWK
layer shall contain a 16-bit logical address unique to that network that the child can use in future
transmissions. The NWK layer shall then set the Relationship field in the corresponding neighbor table entry
to indicate that the neighbor is its parent. By this time, the parent shall have each added the new device to its
neighbor table.

If the device is attempting to join a secure network and it is a router it will need to wait until its parent has
authenticated it before transmitting beacons. The device shall therefore, wait for an NLME-START-
ROUTER.request primitive to be issued from the next higher layer. Upon receipt of this primitive the
NLME shall issue an MLME-START.request primitive as described below if it is a router. If the NLME-
START.ROUTER.request primitive is issued on an end device, the NWK layer shall issue an NLME-
START-ROUTER.confirm primitive with the status value set to INVALID_REQUEST.

Once the device has successfully joined the network and the next higher layer has issued a NLME-START-
ROUTER.request, if it is a router, the NWK layer shall issue the MLME-START.request primitive to its
MAC sub-layer to setup its superframe configuration and begin transmitting beacon frames, if applicable.
Beacon frames are only transmitted if the BeaconOrder parameter is not equal to fifteen [B1]. The PANId,
LogicalChannel, BeaconOrder and SuperframeOrder parameters shall be set equal to the corresponding
values held in the neighbor table entry for its parent. The PANCoordinator and CoordRealignment
parameters shall both be set to FALSE. Upon receipt of the MLME-START.confirm primitive, the NWK
layer shall issue an NLME-START-ROUTER.confirm primitive with the same status value.

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 215

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 49 Procedure for joining a network through association

2.7.1.3.1.2 Parent procedure

The procedure for a ZigBee coordinator or router to join a device to its network using the MAC sub-layer
association procedure is initiated by the MLME-ASSOCIATE.indication primitive arriving from the MAC
sub-layer. Only those devices that are either a ZigBee coordinator or a ZigBee router and that are permitting
devices to join the network shall initiate this procedure. If this procedure is initiated on any other device, the
NLME shall terminate the procedure.

When this procedure is initiated, the NLME of a potential parent shall first determine whether the device
wishing to join already exists on its network. To do this, the NLME shall search its neighbor table in order to
determine whether a matching 64-bit, extended address can be found. If a match is found, the NLME shall
obtain the corresponding 16-bit network address and issue an association response to the MAC sub-layer. If

.

.

.

Child
APL

NLME-
JOIN.reques

Child
NWK

Child
MAC

MLME-
SCAN.reques

MLME-
SCAN.confirm

NLME-
JOIN.confirm

MLME-
ASSOCIATE.reques

MLME-
ASSOCIATE.confirm

Perform active or passive sca

Select suitable PAN

Association procedure

NLME-NETWORK-

DISCOVERY.reques

NLME-NETWORK-
DISCOVERY.confirm

MLME-BEACON-

NOTIFY.indication

MLME-BEACON-
NOTIFY.indication

NLME-
START-ROUTER.reques MLME-

START.reques

Authentication procedur

MLME-
START.confirm NLME-

START-ROUTER.confirm

ZigBee Specification

216 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

a match is not found, the NLME shall, if possible, allocate a 16-bit network address for the new device that
is unique to that network. A finite address space is allocated to every potential parent device, and a device
may disallow a join request once this address space is exhausted. The ZigBee coordinator determines the
amount of address space given. See sub-clause 2.7.1.4 and sub-clause 2.7.1.5115 for an explanation of the
address assignment mechanism.

If the potential parent has exhausted its allocated address space, the NLME shall terminate the procedure
and indicate the fact in the subsequent MLME-ASSOCIATE.response primitive to the MAC sub-layer. The
Status parameter of this primitive shall indicate that the PAN is at capacity. This status value uses MAC sub-
layer terminology and only indicates that the potential parent does not have the capacity to accept any more
children. It is possible in a multihop network that other potential parents still having sufficient address space
exist within the same network.

If the request to join is granted, the NLME of the parent shall create a new entry for the child in its neighbor
table using the supplied device information and indicate a successful association in the subsequent MLME-
ASSOCIATE.response primitive to the MAC sub-layer. The status of the response transmission to the child
is communicated back to the network layer via the MLME-COMM-STATUS.indication primitive.

If the transmission was unsuccessful (the MLME-COMM-STATUS.indication primitive contained a Status
parameter not equal to SUCCESS), the NLME shall terminate the procedure. If the transmission was
successful, the NLME shall notify the next higher layer that a child has just joined the network by issuing
the NLME-JOIN.indication primitive.

The procedure for successfully joining a device to the network is illustrated in the MSC shown in Figure 50
– Procedure for handling a join request.

Figure 50 Procedure for handling a join request

2.7.1.3.2 Joining a network directly

This sub-clause specifies how a child can be directly added to a network by a previously designated parent
device (ZigBee coordinator or router). In this case, the parent device is preconfigured with the 64-bit address

115CCB Comment #122

Check extended address and
assign logical address

MLME-
ASSOCIATE.response

MLME-
ASSOCIATE.indication

NLME-
JOIN.indication

MLME-
COMM-STATUS.indication

Parent
APL

Parent
NWK

Parent
MAC

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 217

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

of the child device. The following text describes how this prior address knowledge shall be used to establish
the parent-child relationship.

The procedure for a ZigBee coordinator or router to directly join a device to its network is initiated by
issuing the NLME-DIRECT-JOIN.request primitive with the DeviceAddress parameter set to the address of
the device to be joined to the network. Only those devices that are either a ZigBee coordinator or a ZigBee
router shall initiate this procedure. If this procedure is initiated on any other device, the NLME shall
terminate the procedure and notify the next higher layer of the illegal request by issuing the NLME-
DIRECT-JOIN.confirm primitive with the Status parameter set to INVALID_REQUEST.

When this procedure is initiated, the NLME of the parent shall first determine whether the specified device
already exists on its network. To do this, the NLME shall search its neighbor table in order to determine
whether a matching 64-bit, extended address can be found. If a match is found, the NLME shall terminate
the procedure and notify the next higher layer that the device is already present in the device list by issuing
the NLME-DIRECT-JOIN.confirm primitive with the Status parameter set to ALREADY_PRESENT.

If a match is not found, the NLME shall, if possible, allocate a 16-bit network address for the new device,
which is unique to that network. A finite address space is allocated to every potential parent device, and the
potential parent shall only create a new entry for the device in its neighbor table if it has the capacity to do
so. If capacity is not available, the NLME shall terminate the procedure and notify the next higher layer of
the unavailable capacity by issuing the NLME-DIRECT-JOIN.confirm primitive with the Status parameter
set to TABLE_FULL. If capacity is available, the NLME shall inform the next higher layer that the device
has joined the network by issuing the NLME-DIRECT-JOIN.confirm primitive with the Status parameter
set to SUCCESS.

The ZigBee coordinator determines the amount of address space given to every potential parent device. See
sub-clause 2.7.1.4 and sub-clause 2.7.1.5116 for an explanation of the address assignment mechanism.

Once the parent has added the child to its network, it is still necessary for the child to make contact with the
parent to complete the establishment of the parent-child relationship. The child shall fulfill this requirement
by initiating the orphaning procedure, which is described in sub-clause 2.7.1.3.

The procedure a parent shall follow to successfully join a device to the network directly is illustrated in the
MSC shown in Figure 51. This procedure does not require any over-the-air transmissions.

Figure 51 Joining a device to a network directly

116CCB Comment #122

NLME-DIRECT-
JOIN.confirm

Parent

APL

Parent

 NWK

Parent

 MAC

Check extended address and
assign logical address

JOIN.request(DeviceAddress)
NLME-DIRECT-

ZigBee Specification

218 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

2.7.1.3.3 Joining or re-joining a network through orphaning

This sub-clause specifies how the orphaning procedure can be initiated by a device that has been directly
joined to a network (joining through orphaning) or by a device that was previously joined to a network but
has lost contact with its parent (re-joining through orphaning).

A device that has been added to a network directly shall initiate the orphan procedure in order to complete
the establishment of its relationship with its parent. The application on the device will determine whether to
initiate this procedure and, if so, will notify the network layer upon power up.

A device that was previously joined to a network has the option of initiating the orphan procedure if its
NLME repeatedly receives communications failure notifications from its MAC sub-layer.

2.7.1.3.3.1 Child procedure

The joining through orphaning procedure is initiated by a child device through the NLME-JOIN.request
primitive with RejoinNetwork parameter set to TRUE.

When this procedure is initiated, the NLME shall first request that the MAC sub-layer perform an orphan
scan over the complete set of available channels, as dictated by the PHY layer [B1]. An orphan scan is
initiated by issuing the MLME-SCAN.request primitive to the MAC sub-layer, and the result is
communicated back to the NLME via the MLME-SCAN.confirm primitive.

If the orphan scan was successful (the child has found its parent), the NLME shall inform the next higher
layer of the success of its request to join or re-join the network by issuing the NLME-JOIN.confirm
primitive with the Status parameter set to SUCCESS.

If the orphan scan was unsuccessful (the parent has not been found), the NLME shall terminate the
procedure and notify the next higher layer that no networks were found. This is achieved by issuing the
NLME-JOIN.confirm primitive with the Status parameter set to NO_NETWORKS.

The procedure for a child to successfully join or re-join a network through orphaning is illustrated in the
MSC shown in Figure 52.

Figure 52 Child procedure for joining or re-joining a network through orphaning

2.7.1.3.3.2 Parent procedure

A device is notified of the presence of an orphaned device when it receives the MLME-ORPHAN.indication
primitive from the MAC sub-layer. Only those devices that are either a ZigBee coordinator or a ZigBee

Child

APL
Child

NWK
Child

MAC

MLME-
SCAN.confirm NLME-

JOIN.confirm

Perform orphan scan

NLME-
JOIN.request(True)

MLME-
SCAN.request

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 219

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

router (a device with parental capabilities) shall initiate this procedure. If this procedure is initiated on any
other device, the NLME shall terminate the procedure.

When this procedure is initiated, the NLME shall first determine whether the orphaned device is its child.
This is accomplished by comparing the extended address of the orphaned device with the addresses of its
children, as recorded in its neighbor table. If a match is found (the orphaned device is its child), the NLME
shall obtain the corresponding 16-bit network address and include it in its subsequent orphan response to the
MAC sub-layer. The orphan response to the MAC sub-layer is initiated by issuing the MLME-
ORPHAN.response primitive, and the status of the transmission is communicated back to the NLME via the
MLME-COMM-STATUS.indication primitive.

If an address match is not found (the orphaned device is not its child), the NLME shall indicate the fact in its
subsequent orphan response to the MAC sub-layer.

The procedure for a parent to join or re-join its orphaned child to the network is illustrated in the MSC
shown in Figure 53.

Figure 53 Parent procedure for joining or re-joining a device to its network through
orphaning

2.7.1.3.4 Neighbor tables

The neighbor table of a device shall contain information on every device within transmission range up to
some implementation-dependent limit. The information in stored in the neighbor table is used for a variety
of purposes, however, not all fields described in this subsection are required for the operation of a ZigBee
device. Each entry in the table shall contain the following information about a neighboring device:

— PAN identifier

— Extended address if device is parent or child

— Network address

— Device type

— Relationship

MLME-
ORPHAN.response

MLME-
ORPHAN.indication

MLME-
COMM-STATUS.indication

Search for address in
device table

Parent
APL

Parent
NWK

Parent
MAC

ZigBee Specification

220 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The following are not required but implementers may wish to include the following information in each
neighbor table. Additionally, it should be noted that implementers may wish to record additional information
in the neighbor table and the following list is not intended to exclude this possibility.

— RxOnWhenIdle

— Extended address (any neighbor)

— Beacon Order

— Depth

— Permit joining

— Transmit Failure

— Potential parent

— Average LQI

— Logical Channel

— Incoming beacon frame timestamp

— Beacon transmission time offset

A table entry shall be updated every time a device receives any frame from the corresponding neighbor. The
contents of a neighbor table entry are shown in Table 133.

Table 133 Neighbor table entry format
Field name Field type Valid range Description

PAN Id Integer 0x0000—0x3fff

The 16-bit PAN identifier of the
neighboring device.

This field shall be present in
every neighbor table entry.

Extended address Integer An extended 64-bit, IEEE
address

64-bit IEEE address that is
unique to every device.

This field shall be present if the
neighbor is a parent or child of
the device

Network address Network address 0x0000—0xffff

The 16-bit network address of
the neighboring device.
This field shall be present in
every neighbor table entry.

Device type Integer 0x00—0x02

The type of the neighbor
device.:

0x00 = ZigBee coordinator

0x01 = ZigBee router

0x02 = ZigBee end device

This field shall be present in
every neighbor table entry.

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 221

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

RxOnWhenIdle Boolean TRUE or FALSE

Indicates if neighbor’s receiver
is enabled during idle portions
of the CAPa:

TRUE = Receiver is off

FALSE = Receiver is on

This field should be present for
entries that record the parent or
children of a ZigBee router or
ZigBee coordinator.

Relationship Integer 0x00—0x03

The relationship between the
neighbor and the current
device:

0x00=neighbor is the parent

0x01=neighbor is a child

0x02=neighbor is a sibling

0x03=None of the above.

This field shall be present in
every neighbor table entry.

Depth Integer 0x00—nwkcMaxDepth

The tree depth of the neighbor
device. A value of 0x00 indi-
cates that the device is the Zig-
Bee coordinator for the
network.

This field is optional.

Beacon order Integer 0x00—0x0f

This specifies how often the
beacon is to be transmitted. For
a definition and discussion of
beacon order see [B1].

This field is optional.

Permit joining Boolean TRUE or FALSE

An indication of whether the
neighbor device is accepting
join requests.
TRUE = neighbor is accepting
join requests
FALSE = neighbor is not
accepting join requests

This field is optional.

Transmit Failure Integer 0x00—0xff

A value indicating if previous
transmissions to the device
were successful or not. Higher
values indicate more failures.

This field is optional.

Table 133 Neighbor table entry format

ZigBee Specification

222 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

2.7.1.4 Distributed117 address assignment mechanism

By default, i.e. when the NIB attribute nwkUseTreeAddrAlloc has a value of TRUE118, network addresses
are assigned using a distributed addressing scheme that is designed to provide every potential parent with a
finite sub-block of network addresses. These addresses are unique within a particular network and are given
by a parent to its children. The ZigBee coordinator determines the maximum number of children that any
device within its network is allowed. Of these children, a maximum of nwkMaxRouters can be router-
capable devices while the rest shall be reserved for end devices. Every device has an associated depth, which
indicates the minimum number of hops a transmitted frame must travel, using only parent-child links, to

Potential parent Integer 0x00—0x01

An indication of whether the
neighbor has been ruled out as
a potential parent due to a
failed join attempt:

0x00 indicates that the neigh-
bor is not a potential parent

0x01 indicates that the neigh-
bor is a potential parent.

This field is optional.

LQI Integer 0x00—0xff

The estimated link quality for
RF transmissions from this
device. See sub-clause 2.7.3.1
for discussion of how this is cal-
culated.

This field is optional.

Logical channel Integer
Selected from the available logi-
cal channels supported by the

PHY

The logical channel on which
the neighbor is operating.

This field is optional.

Incoming beacon
timestamp Integer 0x000000-0xffffff

The time, in symbols, at which
the last beacon frame was
received from the neighbor.
This value is equal to the times-
tamp taken when the beacon
frame was received, as
described in [B1].

Beacon transmis-
sion time offset Integer 0x000000-0xffffff

The transmission time differ-
ence, in symbols, between the
neighbor’s beacon and its par-
ent’s beacon. This difference
may be subtracted from the
corresponding incoming bea-
con timestamp to calculate the
beacon transmission time of the
neighbor’s parent.

aCCB Comment #138

117CCB Comment #122
118Ibid

Table 133 Neighbor table entry format

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 223

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

reach the ZigBee coordinator. The ZigBee coordinator itself has a depth of zero, while its children have a
depth of one. Multihop networks have a maximum depth that is greater than one. The ZigBee coordinator
also determines the maximum depth of the network.

Given values for the maximum number of children a parent may have, nwkMaxChildren (Cm), the
maximum depth in the network, nwkMaxDepth (Lm), and the maximum number of routers a parent may
have as children, nwkMaxRouters (Rm), we may compute the function, , essentially the size of
the address sub-block being distributed by each parent at that depth to its router-capable child devices for a
given network depth, , as follows:119

If a device has a value of zero, then it shall not be capable of accepting children and shall be
treated as a ZigBee end device for purposes of this discussion. The NLME of the device shall set the
macAssociationPermit PIB attribute in the MAC sub-layer to FALSE by issuing the MLME-SET.request
primitive and shall respond to future NLME-PERMIT-JOINING.request primitive with a PermitDuration of
equal or greater than 0x01 with a NLME-PERMIT-JOINING.confirm primitive with a Status parameter of
INVALID_REQUEST and shall terminate the permit joining procedure.

A parent device that has a value greater than zero shall accept child devices and shall assign
addresses to them differently depending on whether the child device is router-capable or not.

Network addresses shall be assigned to router-capable child devices using the value of as an
offset. A parent assigns an address that is one greater than its own to its first router-capable child device.
Subsequently assigned addresses to router-capable child devices are separated from each other by

. A maximum of nwkMaxRouters of such addresses shall be assigned.

Network addresses shall be assigned to end devices in a sequential manner with the nth address, , given
by the following equation:

Where and represents the address of the parent.

The values for an example network having nwkMaxChildren=4, nwkMaxRouters=4 and
nwkMaxDepth=3 are calculated and listed in Table 134. Figure 54 illustrates the example network.

119CCB Comment #100 resulted in a change to this formula.The original was:

 Cskip(d)

d

Cskip(d) = 1+ Cm − Rm − Cm ⋅ RmLm−d −1

1− Rm

−
⋅−−+

=−−⋅+
= −−

otherwise ,1
1

1Rm if),1(1
)(1

Rm
RmCmRmCm

dLmCm
dCskip dLm

 Cskip(d)

 Cskip(d)

 Cskip(d)

 Cskip(d)

An

 An = Aparent + Cskip(d) ⋅ Rm + n

1≤ n ≤ (Cm − Rm) Aparent

 Cskip(d)

ZigBee Specification

224 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 54 Address assignment in an example network

Because an address sub-block cannot be shared between devices, it is possible that one parent exhausts its
list of addresses while a second parent has addresses that go unused. A parent having no available addresses
shall not permit a new device to join the network. In this situation, the new device shall find another parent.
If no other parent is available within transmission range of the new device, the device shall be unable to join
the network unless it is physically moved or there is some other change.

2.7.1.5 Higher-layer address assignment mechanism

When the NIB attribute nwkUseTreeAddrAlloc has a value of FALSE, an alternate addressing scheme is
used where the block of addresses to be assigned by a device is set by the next higher layer using the NIB
attributes nwkNextAddress, nwkAvailableAddresses and nwkAddressIncrement. In this scheme, when a
device has nwkAvailableAddresses equal to 0 it shall be incapable of accepting association requests. The
NLME of such a device shall set the macAssociationPermit PIB attribute in the MAC sub-layer to FALSE
by issuing the MLME-SET.request primitive and shall respond to future NLME-PERMIT-JOINING.request
primitives with a PermitDuration of equal to or greater than 0x01 with a NLME-PERMIT-
JOINING.confirm primitive with a Status parameter of INVALID_REQUEST and shall terminate the

Table 134 Example addressing offset values for each given depth within the network
Depth in the network, d Offset value, Cskip(d)

0 21

1 5

2 1

3 0

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 225

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

permit joining procedure. If the device has nwkAvailableAddresses greater than 0, it shall accept association
requests by setting the macAssociationPermit PIB attribute in the MAC sub-layer to TRUE and by issuing
the MLME-SET.request primitive and it shall respond to future NLME-PERMIT-JOINING.request
primitives with a PermitDuration of equal to or greater than 0x01 with a Status parameter of SUCCESS.
While a device is accepting associations it shall use the value of nwkNextAddress as the address to be
assigned to the next device that successfully associates. After a successful association, the value of
nwkNextAddress shall be incremented by the value of nwkAddressIncrement and the value of
nwkAvailableAddresses shall be decremented by 1.

2.7.1.6 Installation and addressing

It should be clear that nwkMaxDepth roughly determines the “distance” in network terms from the root of
the tree to the farthest end device. In principal nwkMaxDepth also determines the overall network diameter.
In particular, for an ideal network layout where the ZigBee coordinator is located in the center of the
network, as in Figure 54, the network diameter should be 2 * nwkMaxDepth. In practice, application-driven
placement decisions and order of deployment may lead to a smaller diameter. In this case, nwkMaxDepth
provides a lower bound on the network diameter while the 2* nwkMaxDepth provides the upper bound.

Finally, due to the fact that the tree is not dynamically balanced in ZigBee 1.0, the possibility exists that
certain installation scenarios, such as long lines of devices, may exhaust the address capacity of the network
long before the real capacity is reached.

2.7.1.7 Leaving a network

This sub-clause specifies two methods for removing a child from a network that both use the MAC layer
disassociation procedure. The first is initiated by a child as a request to its parent, while the second is
initiated by a parent as a request to its child.

2.7.1.7.1 Method for a child to initiate its own removal from a network

This sub-clause describes how a device can initiate its own removal from the network in response to the
receipt of an NLME-LEAVE.request primitive from the next higher layer or in response to the receipt of a
leave command frame from its parent with the request/indication sub-field of the command options field of
the command frame payload set to 1.

When this procedure is initiated, the NLME shall transmit a leave request command frame to each of its
children, if any. If the procedure was initiated from the next higher layer and the RemoveChildren parameter
of the NLME-LEAVE.request that initiated the procedure is equal to FALSE then the remove children sub-
field of the command options field in the command frame payload of each outgoing frame shall be set to 0.
If the RemoveChildren parameter has a value of TRUE the remove children sub-field shall be set to 1. If the
procedure was initiated by the receipt of a leave command frame then the remove children sub-field of each
outgoing command frame's payload should match that of the received frame. If removal of children is called
for, and the device has children, the NLME shall attempt to remove each of the device's children in turn
using the procedure described in sub-clause 2.7.1.7.2. The NLME shall then transmit a leave command
frame to the device's parent, using the MCPS-DATA.request primitive of the MAC sub-layer, with the
request/indication sub-field of the command options field of the command frame payload set to 0. If removal
of children was not called for then the remove children sub-field of the command options field in the
command frame payload shall be set to 0. If removal of children was called for the remove children sub-field
of the command options field in the command frame payload shall be set to 1 if the device has no children or
else if the device has children and all of the device's children were successfully removed and to 0 otherwise.
The NLME may then issue the MLME-DISASSOCIATE.request primitive to the MAC sub-layer with the
DeviceAddress parameter equal to the address of the device's parent and the DisassociateReason parameter
equal to 0x02. On receipt of the MLME-DISASSOCIATE.confirm primitive, the NLME shall issue the
NLME-LEAVE.confirm primitive to the next higher layer with the DeviceAddress parameter equal to 0.
The Status parameter of the NLME-LEAVE.confirm primitive shall have a value of SUCCESS if:

ZigBee Specification

226 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

1) The status returned by the initial MCPS-DATA.confirm above has a value of SUCCESS, and
2) If the NLME attempts to remove the children of the device in turn, then each of the children is

successfully removed, and
3) The status returned by the MLME.DISASSOCIATE.confirm primitive, if any, is also SUC-

CESS.

Otherwise it shall have a value of LEAVE_UNCONFIRMED.

When the NLME of any device receives one of the leave command frames issued by the leaving device as
described above, it must check its relationship to the sender. If the device receiving the leave command
frame is the parent of the leaving device then it shall check the value of the remove children sub-field of the
command options field in the command frame payload. If this sub-field has a value of 1 then the parent may
be able to reuse the 16-bit network address previously in use by the leaving device. If the remove children
sub-field has a value of 0 then the parent shall not reuse the 16-bit network address of the leaving device. In
either case, it shall set the relationship field of its neighbor table entry corresponding to the leaving device to
0x03 indicating no relationship. If the device receiving a leave command frame is a child of the leaving
device then it shall check the value of the request/indication sub-field of the command options field in the
command frame header. If this sub-field has a value of 1, the NLME shall execute the procedure outlined in
this sub-clause. If the request/indication sub-field has a value of 0, the NLME shall issue a
NLME.LEAVE.indication primitive to the next higher layer with the DeviceAddress set to the 64-bit
address of the sender of the leave command frame.120

2.7.1.7.2 Method for a parent to force a child to leave its network

This sub-clause specifies how a parent can force a child to leave its network employing the leave command
frame and MAC sub-layer disassociation.

The procedure for a parent to remove a child from its network is initiated by issuing the NLME-
LEAVE.request primitive with the DeviceAddress parameter set to the address of the device to be removed
from the network. Only those devices that are either a ZigBee coordinator or a ZigBee router shall initiate
this procedure. If this procedure is initiated on any other device, the NLME shall terminate the procedure
and notify the next higher layer of the illegal request by issuing the NLME-LEAVE.confirm primitive with
the Status parameter set to INVALID_REQUEST.

When this procedure is initiated by the next higher layer the NLME shall first determine whether the
specified device already exists on its network. To do this, the NLME shall search its neighbor table in order
to determine whether a matching extended address can be found. If a match is not found, the NLME shall
terminate the procedure and inform the next higher layer of the unknown device by issuing the NLME-
LEAVE.confirm primitive with the Status parameter set to UNKNOWN_DEVICE. The NLME shall then
transmit a leave command frame to the child device, using the MCPS-DATA.request primitive of the MAC
sub-layer, with the request/indication sub-field of the command options field of the command frame payload
set to 1. If the recursive removal of children is called for, then the remove children sub-field of the outgoing
leave command payload will have a value of 1. Otherwise it will have a value of 0. After issuing the leave
command frame the NLME shall wait for a time-out period that is equal to:

to receive a leave command frame from the MAC, via the MCPS-DATA.indication, where the source
address of the frame is that of the child being asked to leave the network the request/indication subfield of

120CCB Comment #107

• isit if),(
for callednot ischildren of removal if ,

dCskiptenceTimetionPersisnwkTransac
tenceTimetionPersisnwkTransac

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 227

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

the command options field of the command frame payload has a value of 0. It may also wait for the receipt
of an MLME-DISSSOCIATE.indication from the leaving device. At this point it shall issue the NLME-
LEAVE.confirm primitive with the DeviceAddress parameter set to the 64-bit IEEE address of the leaving
device. The Status parameter shall have a value of SUCCESS if:

1) The status value returned by the MLME-DATA.confirm resulting from the transmission of the
leave command frame was SUCCESS, and

2) The leave command frame issued by the device's was received before the time-out, and
3) The recursive removal of children was not called for, or else recursive removal of children was

called for and the remove children subfield of the command options field of the command
frame payload of the received leave command frame above had a value of 1.

Otherwise it shall have a value of LEAVE_UNCONFIRMED.

Child devices receiving the leave command frame will execute the procedure described in sub-
clause 2.7.1.7.1.121

121CCB Comment #107

ZigBee Specification

228 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 55 Sequence diagrams for NLME-LEAVE.request, various scenarios122

122CCB Comment #107

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 229

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 56 Leave command, various scenarios123

2.7.1.8 Changing the ZigBee coordinator configuration

If the next higher layer of a ZigBee coordinator device wishes to change the configuration of the network, it
shall request that the MAC sub-layer instigate the changes in its PIB. The ZigBee coordinator configuration
is composed of the following items:

— Whether the device wishes to be the ZigBee coordinator.

123CCB Comment #107

ZigBee Specification

230 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

— The beacon order of the MAC super-frame.

— The super-frame order of the MAC super-frame.

— Whether battery life extension mode is to be used.

A change to the ZigBee coordinator configuration is initiated by issuing the NLME-NETWORK-
FORMATION.request primitive to the NLME. The status of the attempt is communicated back via the
NLME-NETWORK-FORMATION.confirm primitive.124

The impact of such changes imposed on the MAC sub-layer is out of the scope of this specification. For
more details on these changes see [B1].

2.7.1.9 Resetting a device

The NWK layer of a device shall be reset immediately following power-up, before a join attempt by
association and after a leave attempt by disassociation. A reset is initiated by issuing the NLME-
RESET.request primitive to the NLME and the status of the attempt is communicated back via the NLME-
RESET.confirm primitive. The reset process shall clear the routing table entries of the device. Some devices
may store NWK layer quantities in non-volatile memory and restore them after a reset. However, a device
shall discard its network address after the reset. Such a device shall look for an association and get a network
address from its coordinator. The new network address may be different from its old network address. In
such a case, any device that is communicating with the device that has been reset must rediscover the device
using higher-layer protocols and procedures that are out of scope for this specification.

2.7.2 Transmission and reception

2.7.2.1 Transmission

Only those devices that are currently associated shall send data frames from the NWK layer. If a device that
is not associated receives a request to transmit a frame, it shall discard the frame and notify the higher layer
of the error by issuing an NLDE-DATA.confirm primitive with a status of INVALID_REQUEST.

All frames handled by or generated within the NWK layer shall be constructed according to the general
frame format specified in Figure 36 and transmitted using the MAC sub-layer data service.

In addition to source address and destination address fields, all NWK layer transmissions shall include a
radius field and a sequence number field. For data frames originating at a higher layer, the value of the
radius field may be supplied using the Radius parameter of the NLDE-DATA.request primitive. If a value is
not supplied, then the radius field of the NWK header shall be set to twice the value of the nwkMaxDepth
attribute of the NWK IB (see clause 2.6). The NWK layer on every device shall maintain a sequence number
that is initialized with a random value. The sequence number shall be incremented by one, each time the
NWK layer constructs a new NWK frame, either as a result of a request from the next higher layer to
transmit a new NWK data frame or when it needs to construct a new NWK layer command frame. After
being incremented the value of the sequence number shall be inserted into the sequence number field of the
frame's NWK header125. Once an NPDU is complete, if security is required for the frame, it shall be passed
to the security service provider for subsequent processing according to the specified security suite (see sub-
clause 3.2.3). Security processing is not required if the SecurityEnable parameter of the NDLE-
DATA.request is EQUAL to FALSE or if the NWK security level as specified in nwkSecurityLevel is equal
to 0. In this case the security sub-field of the frame control field shall always be set to 0. On successful
completion of the secure processing, the security suite returns the frame to the NWK layer for transmission.
The processed frame will have the correct auxiliary header attached. If security processing of the frame fails

124CCB Comment #137
125CCB Comment #111, 125

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 231

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

and the frame was a data frame then the higher layer will be informed via the NDLE-DATA.confirm
primitive’s status. If security processing of the frame fails and the frame is a network command frame then it
is discarded and no further processing shall take place

When the frame is constructed and ready for transmission, it shall be passed to the MAC data service. An
NPDU transmission is initiated by issuing the MCPS-DATA.request primitive to the MAC sub-layer and the
results of the transmission returned via the MCPS-DATA.confirm primitive.

2.7.2.2 Reception and rejection

In order to receive data, a device must enable its receiver. The next higher layer may initiate reception using
the NLME-SYNC.request primitive. On a beacon-enabled network, receipt of this primitive by the NWK
layer will cause a device to synchronize with its parent’s next beacon and, optionally, to track future
beacons. The NWK layer shall accomplish this by issuing an MLME-SYNC.request to the MAC sub-layer.
On a non-beacon-enabled network the NLME-SYNC.request will cause the NWK layer to poll the device’s
parent using the MLME-POLL.request primitive.

On a non-beacon-enabled network, the NWK layer on a ZigBee coordinator or ZigBee router shall ensure, to
the maximum extent feasible, that the receiver is enabled whenever the device is not transmitting. On a
beacon-enabled network, the NWK layer should ensure that the receiver is enabled when the device is not
transmitting during the active period of its own superframe and of its parent’s superframe. The NWK layer
may use the macRxOnWhenIdle attribute of the MAC PIB for this purpose.

Once the receiver is enabled, the NWK layer will begin to receive frames via the MAC data service. On
receipt of each frame, the Radius field of the NWK header shall be decremented by 1. If, as a result of being
decremented, this value falls to 0 then the frame shall not, under any circumstances, be retransmitted,
although it may be passed to the next higher layer or otherwise processed by the NWK layer as outlined
elsewhere in this specification.126 Data frames for which the destination address matches the device’s
network address shall be passed to the next higher layer. Broadcast data frames shall also be passed to the
next higher layer. Broadcast data frames shall also be relayed according to the procedure outlined in sub-
clause 2.7.5. If the receiving device is a ZigBee coordinator or an operating ZigBee router, i.e. a router that
has already invoked the NLME-START-ROUTER.request primitive, then it may relay data frames for
which the destination address does not match the device's network address according to the procedures
outlined in sub-clause 2.7.3.3. Under all other circumstances, data frames shall be discarded immediately.
The procedure for handling route request frames is outlined in sub-clause 2.7.3.4.2. The procedure for
handling route reply command frames for which the destination address matches the device's network
address is outlined in sub-clause 2.7.3.4.3. Route reply command frames for which the destination address
does not match the device's network address shall be discarded immediately. Route error command frames
shall be handled in the same manner as data frames.127

The NWK layer shall indicate the receipt of a data frame to the next higher layer using the NLDE-
DATA.indication primitive.

On receipt of a frame, the NLDE shall check the value of the security sub-field of the frame control field. If
this value is non-zero, the NLDE shall pass the frame to the security service provider (see sub-clause 3.2.3)
for subsequent processing according to the specified security suite.

2.7.3 Routing

ZigBee coordinators and routers shall provide the following functionality:

— Relay DATA frames on behalf of higher layers.

126CCB Comment #125
127CCB Comment #134

ZigBee Specification

232 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

— Relay DATA frames on behalf of other ZigBee routers.

— Participate in route discovery in order to establish routes for subsequent DATA frames.

— Participate in route discovery on behalf of end devices.

— Participate in end-to-end route repair.

— Participate in local route repair.

— Employ the ZigBee path cost metric as specified in route discovery and route repair.

ZigBee coordinators or routers may provide the following functionality:

— Maintain routing tables in order to remember best available routes.

— Initiate route discovery on behalf of higher layers.

— Initiate route discovery on behalf of other ZigBee routers.

— Initiate end-to-end route repair.

— Initiate local route repair on behalf of other ZigBee routers.

2.7.3.1 Routing cost

The ZigBee routing algorithm uses a path cost metric for route comparison during route discovery and
maintenance. In order to compute this metric, a cost, known as the link cost, is associated with each link in
the path and link cost values are summed to produce the cost for the path as a whole.

More formally, if we define a path of length as an ordered set of devices and a link,
, as a sub-path of length 2, then the path cost

where each of the values is referred to as a link cost. The link cost for a link is a

function with values in the interval defined as:128

where is defined as the probability of packet delivery on the link .

128CCB Comment #133 mandates a change in value for this formula. The previous value was:

P L D1,D2...DL[]
Di,Di+1[]

C{P} = C [Di,Di+1]{ }
i=1

L−1

∑

C Di,Di+1[]{ } C{l} l

 0...7[]

C l{ }=

7,

min 7,
1

pl

=
4

1round,7min

,7

}{

lp
lC

pl l

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 233

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Thus, implementers may report a constant value of 7 for link cost or they may report a value that reflects the
probability pl of reception - specifically, the reciprocal of that probability – which should, in turn, reflect129

the number of expected attempts required to get a packet through on that link each time it is used. A device
that offers both options may be forced to report a constant link cost by setting the value of the NIB attribute
nwkReportConstantCost to TRUE.

The question that remains, however, is how pl is to be estimated or measured. This is primarily an
implementation issue and implementers are free to apply their ingenuity. pl may be estimated over time by
actually counting received beacon and data frames, observing the appropriate sequence numbers to detect
lost frames, and this is generally regarded as the most accurate measure of reception probability. However,
the most straightforward method, available to all, is to form estimates based on an average over the per-
frame LQI value provided by the IEEE 802.15.4-2003 MAC and PHY. Even if some other method is used,
the initial cost estimates shall be based on average LQI. A table-driven function may be used to map average
LQI values onto C{l} values. It is strongly recommended that implementers check their tables against data
derived from tests on production hardware, as inaccurate costs will hamper the ability of the ZigBee routing
algorithm to operate130

2.7.3.2 Routing tables

A ZigBee router or ZigBee coordinator may maintain a routing table. The information that shall be stored in
a ZigBee routing table is shown in Table 135. A ZigBee router or ZigBee coordinator may also reserve a
number of routing table entries to be used only for route repair and only in case all other routing capacity has
been exhausted. The aging and retirement of routing table entries in order to reclaim table space from entries
that are no longer in use, while it is a recommended practice, is out of scope of this specification.131.

Table 136 enumerates the values for the route status field.

129CCB Comment #133
130CCB Comment #133

Table 135 Routing table
Field Name Size Description

Destination address 2 bytes The 16-bit network address of this route.

Status 3 bits The status of the route. See Table 136 below for values.

Next-hop address 2 bytes The 16-bit network address of the next hop on the way to
the destination.

131CCB Comment #255

Table 136 Route status values
Numeric Value Status

0x0 ACTIVE

0x1 DISCOVERY_UNDERWAY

0x2 DISCOVERY_FAILED

0x3 INACTIVE

0x4 – 0x7 Reserved

ZigBee Specification

234 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

In the text below that describes the routing algorithm the term “routing table capacity” is used to describe the
situation in which a device has the ability to use its routing table to establish a route to a particular
destination device. A device is said to have routing table capacity if:

— It is a ZigBee coordinator or ZigBee router.

— It maintains a routing table.

— It has a free routing table entry or it already has a routing table entry corresponding to the destination.

— The device is attempting route repair and it has reserved some entries for this purpose as described
above.

If a ZigBee router or ZigBee coordinator maintains a routing table it shall also maintain a route discovery
table containing the information shown in Table 137. Routing table entries are long-lived and persistent,
while route discovery table entries last only as long as the duration of a single route discovery operation and
may be reused.

A device is said to have “route discovery table capacity” if:

— It maintains a route discovery table.

— It has a free entry in its route discovery table.

If a device has both routing table capacity and route discovery table capacity then it may be said the have
“routing capacity”.

2.7.3.3 Upon receipt of a data frame

On receipt of a data frame the NWK layer routes it according to the following procedure, which is also
outlined in Figure 57.

If a data frame is received by the NWK layer from its next higher layer and the destination address is equal
to the broadcast address, the NWK layer shall broadcast the frame according to the procedures described in
sub-clause 2.7.5.

Table 137 Route discovery table
Field Name Size Description

Route request ID 1 byte A sequence number for a route request command frame that is
incremented each time a device initiates a route request.

Source address 2 bytes The 16-bit network address of the route request’s initiator.

Sender address 2 bytes

The 16-bit network address of the device that has sent the most
recent lowest cost route request command frame corresponding
to this entry’s Route request identifier and Source address. This
field is used to determine the path that an eventual route reply
command frame should follow.

Forward Cost 1 byte The accumulated path cost from source of the route request to
the current device.

Residual cost 1 byte The accumulated path cost from the current device to the desti-
nation device.

Expiration time 2 bytes
A countdown timer indicating the number of milliseconds until
route discovery expires. The initial value is nwkcRouteDiscovery-
Time.

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 235

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

If the receiving device is a ZigBee router or ZigBee coordinator and the destination of the frame is a ZigBee
end device which is also the child of the receiving device then the frame shall be routed directly to the
destination using the MCPS132-DATA.request primitive as described in sub-clause 2.7.2.1 and setting the
next hop destination address equal to the final destination address.

A device that has routing capacity shall examine the discover route sub-field of the NWK header frame
control field, If the discover route sub-field has a value of 0x02 then the device shall initiate route discovery
immediately as described below in sub-clause 2.7.3.4.1. If the discover route sub-field does not have a value
of 0x02, the device shall check its routing table for an entry corresponding to the destination of the frame. If
there is such an entry, and if the value of the route status field for that entry is ACTIVE, then the device shall
relay the frame using the MCPS-DATA.request primitive. When relaying a data frame, the SrcAddrMode
and DstAddrMode parameters of the MCPS-DATA.request primitive shall both have a value of 0x02,
indicating 16-bit addressing. The SrcPANId and DstPANId parameters shall both have the value provided
by the macPANId attribute of the MAC PIB for the relaying device. The SrcAddr parameter will be set to
the value of macShortAddress from the MAC PIB of the relaying device, and the DstAddr parameter shall
be the value provided by the next-hop address field of the routing table entry corresponding to the
destination. The TxOptions parameter should always be non-zero when bitwise ANDed with the value 0x01,
indicating acknowledged transmission. If the device has a routing table entry corresponding to the
destination of the frame but the value of the route status field for that entry is DISCOVERY_UNDERWAY,
then the frame shall be treated as though route discovery has been initiated for this frame, as described
below in sub-clause 2.7.3.4.1. The frame may optionally be buffered pending route discovery or else routed
along the tree using hierarchical routing, provided that the NIB attribute nwkUseTreeRouting has a value of
TRUE. If the frame is routed along the tree, the discover route sub-field of the NWK header frame control
field shall be set to 0x00. If the device has a routing table entry corresponding to the destination of the frame
but value of the route status field for that entry has a value of DISCOVERY_FAILED or INACTIVE, the
device may route the frame along the tree using hierarchical routing, again provided that the NIB attribute
nwkUseTreeRouting has a value of TRUE. If the device does not have a routing table entry for the
destination, it shall examine the discover route sub-field of the NWK header frame control field. If the
discover route sub-field has a value of 0x01 then the device shall initiate route discovery as described below
in sub-clause 2.7.3.4.1. If the discover route sub-field has a value of 0 and the NIB attribute
nwkUseTreeRouting has a value of TRUE then the device shall route along the tree using hierarchical
routing. If the discover route sub-field has a value of 0, the NIB attribute nwkUseTreeRouting has a value of
FALSE and there is no routing table corresponding to the destination of the frame, the frame shall be
discarded and the NLDE shall issue the NLDE-DATA.confirm primitive with a Status value of
INVALID_REQUEST.133

A device without routing capacity shall route along the tree using hierarchical routing, again provided that
the value of the NIB attribute nwkUseTreeRouting is TRUE.134

For hierarchical routing, if the destination is a descendant of the device, the device shall route the frame to
the appropriate child. If the destination is a child, and it is also and end device, delivery of the frame can fail
due to the macRxOnWhenIdle state of the child device. In the case when the child has macRxOnWhenIdle set
to FALSE, indirect transmission as described in [B1] may be used be used to deliver the frame. If the
destination is not a descendant, the device shall route the frame to its parent.

Trivially every other device in the network is a descendant of the ZigBee coordinator and no device in the
network is the descendant of any ZigBee end device. For a ZigBee router with address at depth , if
the following logical expression is true, then a destination device with address is a descendant:

132CCB Comment #119
133CCB Comment #129, 258, 122
134CCB Comment #129

An d
D

ZigBee Specification

236 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

.

For a definition of , see sub-clause 2.7.1.4.

If it is determined that the destination is a descendant of the receiving device, the address of the next
hop device is given by:

for ZigBee end devices, where , and135

otherwise.

If a data frame is received by the NWK layer from the MAC sub-layer and the destination address is equal to
the broadcast address, the NWK layer shall first re-broadcast the frame and then send it to its next higher
layer for processing. If the data frame is received by the MAC and is not to be broadcast, the NWK layer
shall determine whether the destination address is equal to its own logical address. If so, the NWK layer
shall send the frame to its next higher layer for processing. Otherwise the device is an intermediate device.
In this case, the device shall follow the same procedure outlined above for the case of receiving a unicast
frame from the next higher layer.

135CCB Comment #228 specifies a modified formula here. The original was:

A < D < A + Cskip(d −1)

 Cskip(d)

N

N = D

D > A + Rm × Cskip(d)

A +1+ D − A +1
Cskip(d)

 × Cskip(d)

())(
)(
11 dCskip

dCskip
ADAN ×

 +−
++=

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 237

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 57 Basic routing algorithm

2.7.3.4 Route discovery

Route discovery is the procedure whereby network devices cooperate to find and establish routes through
the NWK and is always performed with regard to a particular source and destination device.

2.7.3.4.1 Initiation of route discovery

The route discovery procedure shall be initiated by the NWK layer on receipt of an NLDE-DATA.request
primitive from a higher layer with the DiscoverRoute parameter set to 0x02, or on receipt of an NLDE-
DATA.request primitive from a higher layer with the DiscoverRoute parameter set to 0x01for which there is

ZigBee Specification

238 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

no routing table entry corresponding to the DstAddr parameter, or on receipt of a frame from the MAC sub-
layer for which the value of the destination address field in the NWK header is not that of the current device
or the broadcast address and in which either the discover route sub-field of the frame control field has a
value of 0x02 or the discover route sub-field of the frame control field has a value of 0x01 and there is no
routing table entry corresponding to the value of the destination address field of the NWK header. In either
case, if the device does not have routing capacity and the NIB attribute nwkUseTreeRouting has a value of
TRUE, the data frame in question shall be routed along the tree using hierarchical routing. If the device does
not have routing capacity and the NIB attribute nwkUseTreeRouting has a value of FALSE, then the frame
shall be discarded.136

If the device has no existing routing table entry for the destination it shall establish a routing table entry with
status equal to DISCOVERY_UNDERWAY. If the device has an existing routing table entry corresponding
to the destination address with status equal to ACTIVE, then that entry shall be used and the status field of
that entry shall remain ACTIVE. If it has an existing routing table entry with some other status value than
ACTIVE then that entry shall be used and the status of that entry shall be set to
DISCOVERY_UNDERWAY. The device shall also establish the corresponding route discovery table entry
if one does not already exist.137

Each device issuing a route request command frame shall maintain a counter used to generate route request
identifiers. When a new route request command frame is created the route request counter is incremented
and the value is stored in the device’s route discovery table in the Route request identifier field. Other fields
in the routing table and route discovery table are set as described in sub-clause 2.7.3.2. The route request
timer in the route discovery table shall be set to expire in nwkcRouteDiscoveryTime milliseconds when the
timer expires, the device shall delete the route request entry from the route discovery table. When this
happens, the routing table entry corresponding to the destination address shall also be deleted if its Status
field still has a value of DISCOVERY_UNDERWAY and there are no other entries with the same
destination field value in the route discovery table138.

The NWK layer may choose to buffer the received frame pending route discovery or else, if the NIB
attribute nwkUseTreeRouting has a value of TRUE, set139 the discover route sub-field of the frame control
field in the NWK header to 0 and forward the data frame along the tree.

Once the device creates the route discovery table and routing table entries, the route request command frame
shall be created with the payload depicted in Figure 41. The individual fields are populated as follows. The
command frame identifier field shall be set to indicate the command frame is a route request, see Figure 129.
The Route request identifier field shall be set to the value stored in the route discovery table entry. The
destination address field shall be set to the 16-bit network address of the device for which the route is to be
discovered. The path cost field shall be set to 0. Once created the route request command frame is ready for
broadcast and is passed to the MAC sub-layer using the MCPS-DATA.request primitive.

When broadcasting a route request command frame at the initiation of route discovery, the NWK layer shall
retry the broadcast nwkcInitialRREQRetries times after the initial broadcast, resulting in a maximum of
nwkcInitialRREQRetries + 1 transmission. The retries will be separated by a time interval of
nwkcRREQRetryInterval milliseconds.

2.7.3.4.2 Upon receipt of a route request command frame

Upon receipt of a route request command frame the device shall determine if it has routing capacity.

If the device does not have routing capacity, it shall check if the frame was received along a valid path. A
path is valid if the frame was received from one of the device’s child devices and the source device is a

136CCB Comment #122, 256
137CCB Comment #136, #260
138CCB Comment #260
139CCB Comment #122

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 239

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

descendant of that child device or if the frame was received from the device’s parent device and the source
device is not a descendant of the device. If the route request command frame was not received along a valid
path, it shall be discarded. Otherwise the device shall check if it is the intended destination. It shall also
check if the destination of the command frame is one of its end-device children by comparing the destination
address field of the route request command frame payload with the address of each of its end-device
children, if any. If either the device or one of its end-device children is the destination of the route request
command frame, it shall reply with a route reply command frame. When replying to a route request with a
route reply command frame, the device shall construct a frame with the frame type field set to 0x01. The
route reply’s source address shall be set to the 16-bit network address of the device creating the route reply
and the destination address shall be set to the calculated next hop address, considering the originator of the
route request as a destination. The link cost from the next hop device to the current device shall be computed
as described in sub-clause 2.7.3.1 and inserted into the path cost field of the route reply command frame.
The route reply command frame shall be unicast to the next hop device by issuing an MCPS-DATA.request
primitive. If the device is not the destination of the route request command frame, the device shall compute
the link cost from the previous device that transmitted the frame, as described in sub-clause 2.7.3.1. This
value shall be added to the path cost value stored in the route request command frame. The route request
command frame shall then be unicast towards the destination using the MCPS-DATA.request service
primitive. The next hop for this unicast transmission is determined in the same manner as if the frame were a
data frame addressed to the device identified by the destination address field in the payload.

If the device does have routing capacity (see Figure 58), it shall check if it is the destination of the command
frame by comparing the destination address field of the route request command frame payload with its own
address. It shall also check if the destination of the command frame is one of its end-device children by
comparing the destination address field of the route request command frame payload with the address of
each of its end-device children, if any. If either the device or one of its end-device children is the destination
of the route request command frame, the device shall determine if a route discovery table (see Table 137)
entry exists with the same route request identifier and source address field. If no such entry exits then one
shall be created. When creating the route discovery table entry, the fields are set to the corresponding values
in the route request command frame. The only exception is the forward cost field, which is determined by
using the previous sender of the command frame to compute the link cost as described in sub-clause 2.7.3.1
and adding it to the path cost contained the route request command frame. The result of the above
calculation is stored in the forward cost field of the newly created route discovery table entry. If the
nwkSymLink attribute is set to true, the device shall also create a routing table entry with the destination
address field set to the source address of the route request command frame and the next hop field set to the
address of the previous device that transmitted the command frame. The status field shall be set to ACTIVE.
The device shall then issue a route reply command frame to the source of the route request command frame.
In the case where the device already has a route discovery table entry for the source address and route
request identifier pair, the device shall determine if the path cost in the route request command frame is less
than the forward cost stored in the route discovery table entry. The comparison is made by first computing
the link cost from the previous device that sent this frame as described in sub-clause 2.7.3.1 and adding it to
the path cost value in the route request command frame. If this value is greater than the value in the route
discovery table entry then the frame shall be dropped and no further processing is required. Otherwise the
forward cost and sender address fields in the route discovery table are updated with the new cost and the
previous device address from the route request command frame. If the nwkSymLink attribute is set to true,
the device shall also create a routing table entry with the destination address field set to the source address of
the route request command frame and the next hop field set to the address of the previous device that
transmitted the command frame. The status field shall be set to ACTIVE. The device shall then respond with
a route reply command frame. In either of the above cases, if the device is responding on behalf of one of its
end-device children, the responder address in the route reply command frame payload shall be set equal to
the address of the end device child and not of the responding device.

When a device with routing capacity is not the destination of the received route request command frame, it
shall determine if a route discovery table entry (see Table 137) exists with the same route request identifier
and source address field. If no such entry exits then one shall be created. The route request timer shall be set

ZigBee Specification

240 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

to expire in nwkcRouteDiscoveryTime milliseconds. If a routing table entry corresponding to the destination
exists and its status is not ACTIVE, the status shall be set to DISCOVERY_UNDERWAY.140 If no such
entry exists, it shall be created and its status set to DISCOVERY_UNDERWAY. If the nwkSymLink
attribute is set to true, the device shall also create a routing table entry with the destination address field set
to the source address of the route request command frame and the next hop field set to the address of the
previous device that transmitted the command frame. The status field shall be set to ACTIVE. When the
route request timer expires, the device deletes the route request entry from the route discovery table. When
this happens, the routing table entry corresponding to the destination address shall also be deleted if its status
field has a value of DISCOVERY_UNDERWAY and there are no other entries in the route discovery table
created as a result of a route discovery for that destination address.141 If an entry in the route discovery table
already exists then the path cost in the route request command frame shall be compared to the forward cost
value in the route discovery table entry. The comparison is made by computing the link cost from the
previous device, as described in sub-clause 2.7.3.1, and adding it to the path cost value in the route request
command frame. If this path cost is greater, the route request command frame is dropped and no further
processing is required. Otherwise the forward cost and sender address fields in the route discovery table are
updated with the new cost and the previous device address from the route request command frame.
Additionally, the path cost field in the route request command frame shall be updated with the cost
computed for comparison purposes. If the nwkSymLink attribute is set to true, the device shall also update
any routing table entry with the destination address field set to the source address of the route request
command frame and the next hop field set to the address of the previous device that transmitted the
command frame. The status field shall be set to ACTIVE. The device shall then rebroadcast the route request
command frame using the MCPS-DATA.request primitive.

When rebroadcasting a route request command frame, the NWK layer shall delay retransmission by a
random jitter amount calculated using the formula:

where is a random function on the interval . The units of this jitter amount are
milliseconds. Implementers may adjust the jitter amount so that route request command frames arriving with
large path cost are delayed more than frames arriving with lower path cost. The NWK layer shall retry the
broadcast nwkcRREQRetries times after the original relay resulting in a maximum of nwkcRREQRetries + 1
relays per relay attempt. Implementers may choose to discard route request command frames awaiting
retransmission in the case that a frame with the same source and route request identifier arrives with a lower
path cost than the one awaiting retransmission.

The device shall also set the status field of the routing table entry corresponding to the destination address
field in the payload to DISCOVERY_UNDERWAY. If no such entry exists, it shall be created.

When replying to a route request with a route reply command frame, a device that has a route discovery
table entry corresponding to the source address and route request identifier of the route request shall
construct a command frame with the frame type field set to 0x01. The source address field of the network
header shall be set to the 16-bit network address of the current device and the destination address field shall
be set to the the value of the sender address field from the corresponding route discovery table entry. The
device constructing the route reply shall populate the payload fields in the following manner. The NWK
command identifier shall be set to route reply. The route request identifier field shall be set to the same value
found in the route request identifier field of the route request command frame. The originator address field
shall be set to the source address in the network header of route request command frame. Using the sender
address field from the route discovery table entry corresponding to the source address in the network header
of route request command frame, the device shall compute the link cost as described in sub-clause 2.7.3.1.
This link cost shall be entered in the path cost field. The route reply command frame is then unicast to the

140CCB Comment #260
141Ibid

 2 × R[nwkcMinRREQJitter,nwkcMaxRREQJitter]

R[a,b] [a,b]

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 241

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

destination by using MCPS-DATA.request primitive and the sender address obtained from the route
discovery table as the next hop.

Figure 58 Receipt of route request

2.7.3.4.3 Upon receipt of route reply command frame

On receipt of a route reply command frame, a device performs the procedure outlined in Figure 59.

If the receiving device has no routing capacity and its NIB attribute nwkUseTreeRouting has a value of
TRUE, it shall forward the route reply using tree routing. If the receiving device has no routing capacity and
its NIB attribute nwkUseTreeRouting has a value of FALSE, it shall discard the command frame.142 Before
forwarding the route reply command frame the device shall update the path cost field in the payload by
computing the link cost from the next hop device to itself as described in sub-clause 2.7.3.1 and adding this
to the value in the route reply path cost field.

If the receiving device has routing capacity, it shall check whether it is the destination of the route reply
command frame by comparing the contents of the originator address field of the command frame payload
with its own address. If so, it shall search its route discovery table for an entry corresponding to the route
request identifier in the route reply command frame payload. If there is no such entry, the route reply
command frame shall be discarded and route reply processing shall be terminated. If a route discovery table

142CCB Comment #122

RREQ received Routing capacity?

Reply with RREP

Valid path?

Am I the

destination?
Unicast RREQ

No

Yes

Yes

No

Discard RREQ No

Am I the

destination?

Yes
Existing route

discovery table

entry?

Create table entries

Respond with RREP

No

Yes

Forward RREQ

No

Am I the

destination or is

one of my end-

devices?

RREQ has lower

path cost than

tables?

Yes

Update tables and

respond with RREP

Yes

Discard RREQ

No

RREQ has lower

path cost than

tables?

No

No

Yes

Update tables and

forward RREQ

Yes

ZigBee Specification

242 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

entry exists, the device shall search its routing table for an entry corresponding to the responder address in
the route reply command frame. If there is no such routing table entry the route reply command frame shall
be discarded and, if a route discovery table entry corresponding to the route request identifier in the route
reply command frame exists, it shall also be removed, and route reply processing shall be terminated. If a
routing table entry and a route discovery table entry exist and if the status field of the routing table entry is
set to DISCOVERY_UNDERWAY, it shall be changed to active and the next hop field in the routing table
shall be set to the previous device that forwarded the route reply command frame. The residual cost field in
the route discovery table entry shall be set to the path cost field in the route reply payload.

If the status field was already set to ACTIVE, the device shall compare the path cost in the route reply
command frame to the residual cost recorded in the route discovery table entry, and update the residual cost
field and next hop field in the routing table entry if the cost in the route reply command frame is smaller. If
the path cost in the route reply is not smaller, the route reply shall be discarded and no further processing
shall take place.

If the device receiving the route reply is not the destination, the device shall find the route discovery table
entry corresponding to the originator address and route request identifier in the route reply command frame
payload. If no such route discovery table entry exists, the route reply command frame shall be discarded. If a
route discovery table entry exists, the path cost value in the route reply command frame and the residual cost
field in the route discovery table entry shall be compared. If the route discovery table entry value is less than
the route reply value, the route reply command frame shall be discarded. Otherwise, the device shall find the
routing table entry corresponding to the responder address in the route reply command frame. It is an error
here if the route discovery table entry exists and there is no corresponding routing table entry, and the route
reply command frame should be discarded. The routing table entry shall be updated by replacing the next
hop field with the address of the previous device that forwarded the route reply command frame. The route
discovery table entry shall also be updated by replacing the residual cost field with the value in the route
reply command frame.

After updating its own route entry, the device shall forward the route reply to the destination. Before
forwarding the route reply, the path cost value shall be updated. The sender shall find the next hop to the
route reply’s destination by searching its route discovery table for the entry matching the route request
identifier and the source address and extracting the sender address. It shall use this next hop address to
compute the link cost as described in sub-clause 2.7.3.1. This cost shall be added to the path cost field in the
route reply. The destination address in the command frame network header shall be set to the next hop
address and the frame shall be unicast to the next hop device using the MCPS-DATA.request primitive.The
DstAddr parameter of the MCPS-DATA.request primitive shall be set to the next-hop address from the route
discovery table.143

143CCB Comment #131

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 243

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 59 Receipt of route reply

2.7.3.5 Route maintenance

A device NWK layer shall maintain a failure counter for each neighbor to which it has an outgoing link, i.e.
to which it has been required to send data frames. If the value of the outgoing link failure counter ever
exceeds nwkcRepairThreshold then the device shall initiate route repair as described in the following
paragraphs. Implementers may choose a simple failure-counting scheme to generate this failure counter
value or they may use a more accurate time-windowed scheme. Note that it is important not to initiate repair
too frequently since repair operations may flood the network and cause other traffic disruptions. The
procedure for retiring links and ceasing to keep track of their failure counter is out of the scope of this
specification.

2.7.3.5.1 Route repair for mesh network topology

When a link or a device fails in mesh network topology, the upstream device shall initiate route repair. If the
upstream device is unable to initiate route repair due to a lack of routing capacity or some other limitation,
the device shall issue a route error command frame back to the source device with the error code indicating
the reason for the failure (see Table 130).

If the upstream device is able to initiate route repair, it shall do so by broadcasting a route request command
frame with the source address set to its own address and the destination address set to the destination address
of the frame that failed in transmission. The route request command frame shall have the route repair sub-
field in the command options field of the command frame payload set to 1 indicating route repair.

ZigBee Specification

244 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

While a device is performing route repair for a particular destination, a device shall not forward frames to
that destination. Any frames that it has pending for that destination at the time route repair is initiated and
any frames for that destination that arrive before the completion of route repair shall either be buffered until
the completion of route repair or discarded depending on the capabilities of the device.144

On receipt of a route request command frame a routing node shall perform the procedure outlined in sub-
clause 2.7.3.4.2. If the routing node is the destination of the route request command frame or the destination
is one of its end-device children, it shall reply with a route reply command frame. The route reply command
frame shall have the route repair sub-field in the command options field of the command frame payload set
to 1 indicating route repair.

If a route reply command frame does not arrive at the upstream device within nwkcRouteDiscoveryTime
milliseconds, the upstream device shall send a route error command frame to the source device. If the
upstream device does receive a route reply within the designated time, it will forward any data that it may
have buffered pending the repair to the destination.

If the source device receiving a route error command frame does not have routing capacity and its NIB
attribute nwkUseTreeRouting has a value of TRUE145, it shall construct a route request command frame as
described in sub-clause 2.7.3.4.1 and unicast the command frame towards its destination along the tree using
hierarchical routing. If the source device does have routing capacity, it shall initiate normal route discovery
as described in sub-clause 2.7.3.4.1.

If an end device that is also an RFD is unable to transmit messages to its parent, the end device shall initiate
the orphaning procedure, as described in [B1]. If the orphaning procedure is successful and the end device
re-establishes communications with its parent, the end device shall resume operation on the network as
before. If the orphaning procedure fails, the end device shall attempt to re-join the network through a new
parent. In this case the new parent shall issue the end device a new 16-bit network address. If the end device
is unable to locate a new parent because there is no other device in its neighborhood with the capacity to
accept an additional child device, the end device will not be able to re-join the network. In this case, user
intervention may be necessary to enable the end device to re-join.

2.7.3.5.2 Route repair for tree network topology

When a downstream device loses synchronization with its parent beacon, indicated by the MAC sub-layer
through the MLME-SYNC-LOSS.indication primitive, or is unable to transmit a message to its parent, the
device may either initiate the orphaning procedure to search for its parent or the association procedure to
find a new parent.[B1] If either the orphaning procedure fails or the device associates with a new upstream
device, the downstream device will receive a new 16-bit network address from its new parent and resume
operation on the network. This allows the network to continue operating in a true tree configuration.

Before a device attempts to re-join the network and receive a new 16-bit network address, the device shall
use the MAC sub-layer disassociation procedure to disassociate all of its children. If the device is unable to
reach one or more of its children, it shall consider the child(ren) disassociated from the network and remove
the 16-bit addresses of the children from its neighbor table. The device shall then re-join the network and
begin operation with its new address.

Similarly if a disassociated child has its own children, it shall disassociate them from the network before
attempting re-association. If the child is able to re-associate either through a new parent or through its
original parent, the child shall receive a new 16-bit network address and begin operation on the network
using the new address.

144CCB Comment #124
145CCB Comment #122

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 245

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Optionally, if the implementer chooses not to seek a new 16-bit network address, the network will be
partitioned by a link failure. The remaining portions of the partitioned network would then operate
separately.

If an upstream device is unable to transmit a message to one of its children it may drop the message and send
a route error command frame to the originating device to indicate that the message has not been delivered.

2.7.4 Scheduling beacon transmissions

Beacon scheduling is necessary in a multihop topology to prevent the beacon frames of one device from
colliding with either the beacon frames or data transmissions of its neighboring devices. Beacon scheduling
is necessary when implementing a tree topology but not a mesh topology, as beaconing is not permitted in
ZigBee mesh networks.

2.7.4.1 Scheduling method

The ZigBee coordinator shall determine the beacon order and superframe order for every device in the
network (see [B1] for more information on these attributes). Because one purpose of multihop beaconing
networks is to allow routing nodes the opportunity to sleep in order to conserve power, the beacon order
shall be set much larger than the superframe order. Setting the attributes in this manner makes it possible to
schedule the active portion of the superframes of every device in any neighborhood such that they are non-
overlapping in time. In other words, time is divided into approximately (macBeaconInterval/
macSuperframeDuration) non-overlapping time slots, and the active portion of the superframe of every
device in the network shall occupy one of these non-overlapping time slots. An example of the resulting
frame structure for a single beaconing device is shown in Figure 60.

Figure 60 Typical frame structure for a beaconing device

The beacon frame of a device shall be transmitted at the start of its non-overlapping time slot, and the
transmit time shall be measured relative to the beacon transmit time of the parent device. This time offset
shall be included in the beacon payload of every device in a multihop beaconing network (see sub-
clause 2.7.6 for a complete list of beacon payload parameters). Therefore a device receiving a beacon frame
shall know the beacon transmission time of both the neighboring device and the parent of the neighboring
device, since the transmission time of the parent may be calculated by subtracting the time offset from the
timestamp of the beacon frame. The receiving device shall store both the local timestamp of the beacon
frame and the offset included in the beacon payload in its neighbor table. The purpose of having a device
know when the parent of its neighbor is active is to maintain the integrity of the parent-child communication
link by alleviating the hidden node problem. In other words, a device will never transmit at the same time as
the parent of its neighbor.

Communication in a tree network shall be accomplished using the parent-child links to route along the tree.
Since every child tracks the beacon of its parent, transmissions from a parent to its child shall be completed
using the indirect transmission technique. Transmissions from a child to its parent shall be completed during
the CAP of the parent. Details for the communication procedures can be found in [B1].

Beacon Interval

Inactive Period

Superframe Duration

Beacon CAP

ZigBee Specification

246 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

A new device wishing to join the network shall follow the procedure outlined in sub-clause 2.3.6. In the
process of joining the network, the new device shall build its neighbor table based on the information
collected during the MAC scan procedure. Using this information, the new device shall choose an
appropriate time for its beacon transmission and CAP (the active portion of its superframe structure) such
that the active portion of its superframe structure does not overlap with that of any neighbor or of the parent
of any neighbor. If there is no available non-overlapping time slot in the neighborhood, the device shall not
transmit beacons and shall operate on the network as an end device. If a non-overlapping time slot is
available, the time offset between the beacon frames of the parent and of the new device shall be chosen and
included in the beacon payload of the new device. Any algorithm for selecting the beacon transmission time
that avoids beacon transmission during the active portion of the superframes of its neighbors and their
parents may be employed, as interoperability will be ensured.

To counteract drift, the new device shall track the beacon of its parent and adjust its own beacon
transmission time such that the time offset between the two remains constant. Therefore the beacon frames
of every device in the network are essentially synchronized with those of the ZigBee coordinator. Figure 61
illustrates the relationship between the active superframe portions of a parent and its child.

Figure 61 Parent-child superframe positioning relationship

The density of devices that can be supported in the network is inversely proportional to the ratio of the
superframe order to the beacon order. The smaller the ratio, the longer the inactive period of each device and
the more devices that can transmit beacon frames in the same neighborhood. It is recommended that a tree
network utilize a superframe order of 0, which gives a superframe duration of 15.36 ms, and a beacon order
of between 6 and 10, which gives a beacon interval between 0.98304s and 15.72864s. Using these
superframe and beacon order values, a typical duty cycle for devices in the network will be between ~2%
and ~0.1%.

2.7.4.2 MAC enhancement

In order to employ the beacon scheduling algorithm just described, it is necessary to implement the
following enhancement to the IEEE Std 802.15.4-2003146 MAC sub-layer.

146CCB Comment #265

Beacon Tracking

Beacon
Tx Offset

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 247

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

A new parameter, StartTime, shall be added to the MLME-START.request primitive to specify the time to
begin transmitting beacons. The new format of the primitive is as follows:

The StartTime parameter is fully described in Table 138, and the description of all other parameters can be
found in [B1].

2.7.5 Broadcast communication

This sub-clause specifies how a broadcast transmission is accomplished within a ZigBee network. This
mechanism is used to broadcast all network layer data frames147. Any device within a network may initiate
a broadcast transmission intended for all other devices that are part of the same network. A broadcast
transmission is initiated by the local APS sub-layer entity through the use of the NLDE-DATA.request
primitive by setting the DstAddr parameter to 0xffff.148

To transmit a broadcast MSDU, the NWK layer issues an MCPS-DATA.request primitive to the MAC sub-
layer with the DstAddrMode parameter set to 0x02 (16-bit network address) and the DstAddr parameter set
to 0xffff, which is the broadcast network address. The PANId parameter shall be set to the PANId of the
ZigBee network. This specification does not support broadcasting across multiple networks. Broadcast
transmissions shall not use the MAC sub-layer acknowledgement; instead a passive acknowledgement
mechanism is used in the case of non-beacon-enabled ZigBee networks. Passive acknowledgement means
that every device keeps track if its neighboring devices have successfully relayed the broadcast

MLME-START.request (
PANID,
LogicalChannel,
BeaconOrder,
SuperframeOrder,
PANCoordinator,
BatteryLifeExtention,
CoordRealignment,
SecurityEnable,
StartTimea

)

aCCB Comment #265

Table 138 Start time for beacon transmissions
Name Type Valid range Description

StartTime Integer 0x000000-0xffffff

The time at which to begin transmitting
beacons. If the device issuing the primi-
tive is the PAN coordinator, this param-
eter is ignored and beacon
transmissions will begin immediately.
Otherwise, this parameter specifies the
time relative to the received beacon of
the device with which it is associated.

The parameter is specified in symbols
and is rounded to a backoff slot bound-
ary. The precision of this value is a min-
imum of 20 bits, with the lowest 4 bits
being the least significant.a

aCCB Comment #265

147CCB Comment #201
148CCB Comment #125

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 248

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

transmission. The MAC sub-layer acknowledgement is disabled by setting the acknowledged transmission
flag of the TxOptions parameter to FALSE. All other flags of the TxOptions parameter shall be set based on
the network configuration.

. Each device shall keep a record of any new broadcast transaction that is either initiated locally or received
from a neighboring device. This record is called the broadcast transaction record (BTR) and shall contain at
least the sequence number and the source address of the broadcast frame. The broadcast transaction records
are stored in the broadcast transaction table (BTT).149

When a device receives a broadcast frame from a neighboring device, it shall compare the Sequence
number150 and the source address of the broadcast frame with the records in its BTT. If the device has a
BTR of this particular broadcast frame in its BTT, it shall update the BTR to mark the neighboring device as
having relayed the broadcast frame. It shall then drop the frame. If no record is found, it shall create a new
BTR in its BTT and shall mark the neighboring device as having relayed the broadcast. The NWK layer
shall then indicate to the higher layer that a new broadcast frame has been received. If the radius151 field
value is greater than 0 it shall retransmit the frame. Otherwise it shall drop the frame. Before the
retransmission, it shall wait for a random time period called broadcast jitter. This time period shall be
bounded by the value of the nwkcMaxBroadcastJitter attribute.

If, on receipt of a broadcast frame, the NWK layer finds that the BTT is full and contains no expired entries,
then the frame should be ignored. In this situation the frame should not be retransmitted, nor should it be
passed up to the next higher layer.152

A device, operating in a non-beacon-enabled ZigBee network, shall retransmit a previous broadcast frame if
any of its neighboring devices have not relayed the broadcast frame within nwkPassiveAckTimeout seconds.
In this case a device shall retransmit a broadcast frame for at most nwkMaxBroadcastRetries times.

A device should change the status of a BTT entry after nwkNetworkBroadcastDeliveryTime seconds have
elapsed since its creation. The entry should change status to expired and thus the entry can be overwritten if
required when a new broadcast is received.153

When a ZigBee router that has the macRxOnWhenIdle MAC PIB attribute set to FALSE receives a
broadcast transmission, it shall use a different procedure for retransmission than the one outlined above. It
shall retransmit the frame without delay to each of its neighbors individually, using a MAC layer unicast, i.e.
with the DstAddr parameter of the MCPS-DATA.request primitive set to the address of the receiving device
and not to the broadcast address. Similarly, a router with the macRxOnWhenIdle MAC PIB attribute set to
TRUE, which has one or more neighbors with the macRxOnWhenIdle MAC PIB parameter set to FALSE,
shall retransmit the broadcast frame to each of these neighbors in turn as a MAC layer unicast in addition to
performing the more general broadcast procedure spelled out in the previous paragraphs. Indirect
transmission, as described in [B1], may be employed to ensure that these unicasts reach their destination.

Every ZigBee router shall have the ability to buffer at least 1 frame at the NWK layer in order to facilitate
retransmission of broadcasts.

Figure 62 shows a broadcast transaction between a device and two neighboring devices.

149CCB Comment #111
150Ibid
151Ibid
152CCB Comment #108, 110
153CCB Comment #110

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 249

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 62 Broadcast transaction message sequence chart

2.7.6 NWK information in the MAC beacons

This sub-clause specifies how the NWK layer uses the beacon payload of a MAC sub-layer beacon frame to
convey NWK layer-specific information to neighboring devices.

When the association permit subfield of the superframe specification field of the beacon frame of the device,
as defined in [B1], is set to 1 indicating that association is permitted, then the beacon payload shall contain
the information shown in Table 139. This enables the NWK layer to provide additional information to new
devices that are performing network discovery and allows these new devices to more efficiently select a
network and particular neighbor to join. Refer to sub-clause 2.7.1.3.1.1 for a detailed description of the
network discovery procedure. This information is not required to be in the beacon payload when the

Neighbor 1
NWK

Device
NWK

Neigbor 2
NWK

Broadcast Transmission

Add new BTR
Mark neighbor 1 as having

relayed the message

Random
broadcast

delay

Broadcast Transmission

Mark device as having
relayed the message

Add new BTR
Mark device as having
relayed the message

Random
broadcast

delay

Broadcast Transmission

Ignore
broadcast

Broadcast
retry timer

Mark neighbor 2 as having
relayed the message

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 250

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

association permit subfield of the superframe specification field of the beacon frame of the device is set to 0
indicating that association is not permitted.

The NWK layer of the ZigBee coordinator shall update the beacon payload immediately following network
formation. All other ZigBee devices shall update it immediately after the association is completed and
anytime the network configuration (any of the parameters specified in Table 106) changes.

Table 139 NWK layer information fieldsa

aCCB Comment #129

Name Type Valid range Description

Protocol ID Integer 0x00 – 0xff

This field identifies the network
layer protocols in use and, for pur-
poses of this specification shall
always be set to 0, indicating the
ZigBee protocols. The value 0xff
shall also be reserved for future
use by the ZigBee alliance.

Stack profile Integer 0x00 – 0x0f A ZigBee stack profile identifier.

nwkcProtocolVersion Integer 0x00 – 0x0f The version of the ZigBee proto-
col.

Router capacityb

bIbid

Boolean TRUE or FALSE

This value is set to TRUE if this
device is capable to accept join
requests from router-capable
devices and is set to FALSE oth-
erwise.

Device depth Integer 0x00 – nwkMaxDepthc

cCCB Comment #229

The tree depth of this device. A
value of 0x00 indicates that this
device is the ZigBee coordinator
for the network.

Endd device capacity

dCCB Comment #129

Boolean TRUE or FALSE

This value is set to TRUE if the
device is capable of accepting
join requests from end devices
seeking to join the network and
is set to FALSE otherwise.e

eIbid

TxOffset Integer 0x000000 – 0xffffff

This value indicates the difference
in time, measured in symbols,
between the beacon transmission
time of the device and the beacon
transmission time of its parent.
This offset may be subtracted
from the beacon transmission time
of the device to calculate the bea-
con transmission time of the par-
ent.

This parameter is only included
when implementing a multihop
beaconing network.

Network Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 251

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The beacon payload is written into the MAC sub-layer PIB using the MLME-SET.request primitive. The
macBeaconPayloadLength attribute is set to the length of the beacon payload, and the byte sequence
representing the beacon payload is written into the macBeaconPayload attribute. The formatting of the byte
sequence representing the beacon payload is shown in Figure 63.

Figure 63 Format of the MAC sub-layer beacon payload

2.7.7 Persistent data

Devices operating in the field may be reset manually or programmatically by maintenance personnel, or may
be reset accidentally for any number of reasons, including localized or network-wide power failures, battery
replacement during the course of normal maintenance, impact and so on. At a minimum, the following
information must be preserved across resets in order to maintain an operating network:

— The device's PAN ID.

— The device's 16-bit network address.

— The 64-bit IEEE address and 16-bit network address of each associated child.

— The stack profile in use.

— The values of nwkNextAddress and nwkAvailableAddresses NIB attributes, if the alternative address-
ing is in use.

— The device's tree depth, if the distributed addressing scheme is in use.

The method by which these data are made to persist is beyond the scope of this specification.154

Bits: 0-7 8-11 12-15 16-17 18 19a-22

aCCB Comment #229

23 24-47

Protocol
ID

Stack
profile

nwkcProtocol-
Version Reservedb

bCCB Comment #129

 Router
capacityc

cIbid

Device
depth

Endd
device

capacity

dIbid

Tx Offset
(optional)

154CCB Comment #183

ZigBee Specification

252 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 253

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Chapter 3 Security Services Specification

3.1 Document Organization

The remaining portions of this document specify in greater detail the various security services available
within the ZigBee stack. Basic definitions and references are given in clause 3.2. A general description of
the security services is given in sub-clause 3.2.1. In this clause, the overall security architecture is discussed;
basic security services provided by each layer of this architecture are introduced. Clauses 3.2.2, 3.2.3, and
3.2.4 give the ZigBee Alliance’s security specifications for the Medium Access Control (MAC) layer, the
Network (NWK) layer, and the Application Support Sub-layer (APS) layer, respectively. These clauses
introduce the security mechanisms, give the primitives, and define any frame formats used for security
purposes. Clause 3.6 describes security elements common to the MAC, NWK, and APS layers. Clause 3.7
provides a basic functional description of the available security features. Finally, annexes provide technical
details and test vectors needed to implement and test the cryptographic mechanisms and protocols used by
the MAC, NWK, and APS layers.

3.2 General Description

Security services provided for ZigBee include methods for key establishment, key transport, frame
protection, and device management. These services form the building blocks for implementing security
policies within a ZigBee device. Specifications for the security services and a functional description of how
these services shall be used are given in this document.

3.2.1 Security Architecture and Design

In this clause, the security architecture is described. Where applicable, this architecture complements and
makes use of the security services that are already present in the 802.15.4 security specification.

3.2.1.1 Security Assumptions

The level of security provided by the ZigBee security architecture depends on the safekeeping of the
symmetric keys, on the protection mechanisms employed, and on the proper implementation of the
cryptographic mechanisms and associated security policies involved. Trust in the security architecture
ultimately reduces to trust in the secure initialization and installation of keying material and to trust in the
secure processing and storage of keying material. In the case of indirect addressing, it is assumed that the
binding manager is trusted.

Implementations of security protocols, such as key establishment, are assumed to properly execute the
complete protocol and do not leave out any steps hereof. Random number generators are assumed to operate
as expected. Furthermore, it is assumed that secret keys do not become available outside the device in an
unsecured way. That is, a device will not intentionally or inadvertently transmit its keying material to other
devices, unless the keying material is protected, such as during key-transport. An exception to this
assumption occurs when a device that has not been preconfigured joins the network. In this case, a single
key may be sent unprotected, thus resulting in a brief moment of vulnerability.

The following caveat in these assumptions applies: due to the low-cost nature of ad hoc network devices,
one cannot generally assume the availability of tamper-resistant hardware. Hence, physical access to a

ZigBee Specification

254 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

device may yield access to secret keying material and other privileged information and access to the security
software and hardware.

Due to cost constraints, ZigBee has to assume that different applications using the same radio are not
logically separated (e.g., by using a firewall). In addition, from the perspective of a given device, it is even
not possible (barring certification) to verify whether cryptographic separation between different applications
on another device, or even between different layers of the communication stack hereof, is indeed properly
implemented. Hence, one has to assume that separate applications using the same radio trust each other (i.e.,
there is no cryptographic task separation). In addition, lower layers (e.g., APS, NWK, or MAC) are fully
accessible by any of the applications. These assumptions lead to an open trust model for a device: different
layers of the communication stack and all applications running on a single device trust each other.

In summary: the provided security services cryptographically protect the interfaces between different
devices only; separation of the interfaces between different stack layers on the same device is arranged non-
cryptographically, via proper design of security service access points.

3.2.1.2 Security Design Choices

The open trust model (as described in sub-clause 3.2.1.1) on a device has far-reaching consequences. It
allows re-use of the same keying material among different layers on the same device and it allows end-to-
end security to be realized on a device-to-device basis rather than between pairs of particular layers (or even
pairs of applications) on two communicating devices.

Another consideration is whether one is concerned with the ability of malevolent network devices to use the
network to transport frames across the network without permission.

These observations lead to the following architectural design choices.

First, the principle that “the layer that originates a frame is responsible for initially securing it” is
established. For example, if a MAC layer disassociate frame needs protection, MAC layer security shall be
used. Likewise, if a NWK command frame needs protection, NWK layer security shall be used.

Second, if protection from theft of service is required (i.e., malevolent network devices), NWK layer
security shall be used for all frames except those communicated between a router and a newly joined device
(until the newly joined device received the Network key). Thus, only a device that has joined the network
and successfully received the Network key will be able to have its messages communicated more than one
hop across the network.

Third, due to the open trust model, security can be based on the reuse of keys by each layer. For example, the
active Network key shall be used to secure APS layer broadcast frames, NWK layer frames, or MAC layer
commands. Reuse of keys helps reduce storage costs.

Fourth, end-to-end security is enabled such as to make it possible that only source and destination devices
have access to their shared key. This limits the trust requirement to those devices whose information is at
stake. Additionally, this ensures that routing of messages between devices can be realized independent of
trust considerations (thus, facilitating considerable separation of concern).

Fifth, to simplify interoperability of devices, the security level used by all devices in a given network and by
all layers of a device shall be the same. In particular, the security level indicated in the PIB and NIB shall be
the same. If an application needs more security than is provided by a given network, it shall form its own
separate network with a higher security level.

There are several policy decisions which any real implementation must address correctly. Application
profiles should include these policies:

— Handling error conditions arising from securing and unsecuring packets. Some error conditions may
indicate loss of synchronization of security material, or may indicate ongoing attacks.

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 255

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

— Detecting and handling loss of counter synchronization and counter overflow.

— Detecting and handling loss of key synchronization.

— Expiration and periodic update of keys, if desired.

3.2.1.3 Security Keys

Security amongst a network of ZigBee devices is based on ‘link’ keys and a “network” key. Unicast
communication between APL peer entities is secured by means of a 128-bit link key shared by two devices,
while broadcast communications are secured by means of a 128-bit Network key shared amongst all devices
in the network. The intended recipient is always aware of the exact security arrangement (i.e., the recipient
knows whether a frame is protected with a link or a Network key).

A device shall acquire link keys either via key-transport, key-establishment, or pre-installation (e.g., factory
installation). A device shall acquire a Network key via key-transport or pre-installation (e.g., factory
installation). The key-establishment technique for acquiring a link key (see sub-clause 3.2.4.1) is based on a
'master' key. A device shall acquire a master key (for purposes of establishing corresponding link keys) via
key-transport or pre-installation (e.g., factory installation). Ultimately, security between devices depends on
the secure initialization and installation of these keys.

In a secured network there are a variety of security services available. Prudence dictates that one would like
to avoid re-use of keys across different security services, which may cause security leaks due to unwanted
interactions. As such, these different services use a key derived from a one-way function using the link key
(as specified in sub-clause 3.6.3). The use of uncorrelated keys ensures the logical separation of executions
of different security protocols. he key-load key is used to protect transported master keys; the key-transport
key is used to protect other transported keys.

The Network key may be used by the MAC, NWK, and APL layers of ZigBee. As such, the same Network
key and associated outgoing and incoming frame counters shall be available to all of these layers. The link
and master keys may be used only by the APS sub-layer. As such, the link and master keys shall be available
only to the APL layer.

3.2.1.4 ZigBee Security Architecture

ZigBee applications communicate using the IEEE 802.15.4 wireless standard [B1], which specifies two
layers, the Physical (PHY) and Medium Access Control (MAC) layers. ZigBee builds on these layers a
Network (NWK) layer and an Application (APL) layer. The PHY layer provides the basic communication
capabilities of the physical radio. The MAC layer provides services to enable reliable, single-hop
communication links between devices. The ZigBee NWK layer provides routing and multi-hop functions
needed for creating different network topologies (e.g., star, tree, and mesh structures). The APL layer
includes an Application Support (APS) sublayer, the ZigBee Device Object (ZDO), and applications. The
ZDO is responsible for overall device management. The APS layer provides a foundation for servicing the
ZDO and ZigBee applications.

The architecture includes security mechanisms at three layers of the protocol stack. The MAC, NWK, and
APS layers are responsible for the secure transport of their respective frames. Furthermore, the APS
sublayer provides services for the establishment, and maintenance of security relationships. The ZigBee
Device Object (ZDO) manages the security policies and the security configuration of a device. Figure 1
shows a complete view of the ZigBee protocol stack. The security mechanisms provided by the APS and
NWK layers are described in this version of the specification, as is the processing of secure MAC frames.

3.2.2 MAC Layer Security

When a frame originating at the MAC layer needs to be secured, ZigBee shall use MAC layer security as
specified by the 802.15.4 specification [B1] and augmented by clause 3.3. A security corrigendum

ZigBee Specification

256 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

proposal [B3] is being developed to augment the MAC layer specification and include the security elements
needed by ZigBee. Specifically, at least one of ZigBee’s security needs is the ability to protect incoming and
outgoing frames using the security levels based on CCM* (see sub-clause 3.6.2.1, and Table 169 for a
description of ZigBee security levels). CCM* is a minor modification of CCM specified in Clause 7 and
Annex B of the 802.15.4 MAC layer specification [B1]. CCM* includes all of the features of CCM and
additionally offers encryption-only and integrity-only capabilities. These extra capabilities simplify security
by eliminating the need for CTR and CBC-MAC modes. Also, unlike other MAC layer security modes
which require a different key for every security level, the use of CCM* enables the use of a single key for all
CCM* security levels. With the use of CCM* throughout the ZigBee stack, the MAC, NWK, and APS
layers can reuse the same key.

The MAC layer is responsible for its own security processing, but the upper layers shall determine which
security level to use. For ZigBee, MAC layer frames requiring security processing shall be processed using
the security material from the macDefaultSecurityMaterial or the macACLEntryDescriptorSet attributes of
the MAC PIB. The upper layer (e.g., APL) shall set macDefaultSecurityMaterial to coincide with the active
Network key and counters from the NWK layer and shall set macACLEntryDescriptorSet to coincide with
any link keys from the APS layer that are shared with neighboring devices (e.g., a parent and child). The
security suite shall be CCM* and the upper layers shall set the security level to coincide with the
nwkSecurityLevel attribute in the NIB. For ZigBee, MAC layer link keys shall be preferred, but if not
available, the default key (i.e., macDefaultSecurityMaterial) shall be used. Figure 64 shows an example of
the security fields that may be included in an outgoing frame with security applied at the MAC level.

Figure 64 ZigBee frame with security at the MAC level

3.2.3 NWK Layer Security

When a frame originating at the NWK layer needs to be secured or when a frame originates at a higher layer
and the nwkSecureAllFrames attribute in the NIB is TRUE, ZigBee shall use the frame protection
mechanism specified in sub-clause 3.4.1 of this specification, unless the SecurityEnable parameter of the
NLDE-DATA.request primitive is FALSE, explicitly prohibiting security155. Like the MAC layer, the
NWK layer's frame protection mechanism shall make use of the Advanced Encryption Standard (AES) [B8]
and use CCM* as specified in Annex A. The security level applied to a NWK frame shall be given by the
nwkSecurityLevel attribute in the NIB. Upper layers manage NWK layer security by setting up active and
alternate Network keys and by determining which security level to use.

One responsibility of the NWK layer is to route messages over multi-hop links. As part of this responsibility,
the NWK layer will broadcast route request messages and process received route reply messages. Route
request messages are simultaneously broadcast to nearby devices and route reply messages originate from
nearby devices. If the appropriate link key is available, the NWK layer shall use the link key to secure
outgoing NWK frames. If the appropriate link key is not available, in order to secure messages against
outsiders the NWK layer shall use its active Network key to secure outgoing NWK frames and either its
active or an alternate Network key to secure incoming NWK frames. In this scenario, the frame format

155CCB Comment #148

Encrypted MAC Payload MIC Auxiliary
HDR

MAC
HDR

PHY
HDR SYNC

Application of security suite adds auxiliary security
information, and may add an integrity code

When integrity protection is employed, the entire MAC frame is protected

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 257

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

explicitly indicates the key used to protect the frame, thus intended recipients can deduce which key to use
for processing an incoming frame and also determine if the message is readable by all network devices,
rather than just by itself.

Figure 65 shows an example of the security fields that may be included in a NWK frame.

Figure 65 ZigBee frame with security on the NWK level

All of the above NWK frame is integrity-protected

Application of security suite adds auxiliary header

and also an integrity code

Encrypted NWK Payload MIC
Auxiliary

HDR

MAC

HDR

PHY

HDR
SYNC

NWK

HDR

ZigBee Specification

258 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.2.4 APL Layer Security

When a frame originating at the APL layer needs to be secured, the APS sublayer shall handle security. The
APS layer's frame protection mechanism is specified in sub-clause 3.5.1 of this specification. The APS layer
allows frame security to be based on link keys or the Network key. Figure 66 shows an example of the
security fields that may be included in an APL frame. Another security responsibility of the APS layer is to
provide applications and the ZDO with key establishment, key transport, and device management services.

Figure 66 ZigBee frame with security on the APS level

3.2.4.1 Key Establishment

The APS sublayer's key establishment services provide the mechanism by which a ZigBee device may
derive a shared secret key, the so-called link key (see sub-clause 3.2.1.3) with another ZigBee device. Key
establishment involves two entities, an initiator device and a responder device, and is prefaced by a trust-
provisioning step. Trust information (e.g., a master key) provides a starting point for establishing a link key
and can be provisioned in-band or out-band. Once trust information is provisioned, a key-establishment
protocol involves three conceptual steps: the exchange of ephemeral data, the use of this ephemeral data to
derive the link key, and the confirmation that this link key was correctly computed.

In the Symmetric-Key Key Establishment (SKKE) protocol, an initiator device establishes a link key with a
responder device using a master key. This master key, for example, may be pre-installed during
manufacturing, may be installed by a trust center (e.g., from the initiator, the responder, or a third party
device acting as a trust center), or may be based on user-entered data (e.g., PIN, password, or key). The
secrecy and authenticity of the master key needs to be upheld in order to maintain a trust foundation.

3.2.4.2 Transport Key

The transport-key service provides secured and unsecured means to transport a key to another device or
other devices. The secured transport-key command provides a means to transport a master, link, Network
key from a key source (e.g., trust center) to other devices. The unsecured transport-key command provides a
means for loading a device with an initial key. This command does not cryptographically protect the key
being loaded. In this case, the security of the transported key can be realized by non-cryptographic means,
e.g., by communicating the command via an out-of-band channel.

3.2.4.3 Update Device

The update-device service provides a secure means for a device (e.g., a router) to inform a second device
(e.g., a trust center) that a third device has had a change of status that must be updated (e.g., the device
joined or left the network). This is the mechanism by which the trust center maintains an accurate list of
active network devices.

All of the above APS frame is integrity-protected

Encrypted APS Payload MIC
Auxiliary

HDR

MAC

HDR

Application of security suite adds auxiliary header

and also an integrity code

PHY

HDR
SYNC

NWK

HDR

APS

HDR

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 259

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.2.4.4 Remove Device

The remove device service provides a secure means by which a device (e.g., a trust center) may inform
another device (e.g., a router) that one of its children should be removed from the network. This may be
employed, for example, to remove a device from the network that has not satisfied the trust center’s security
requirements for network devices.

3.2.4.5 Request Key

The request-key service provides a secure means for a device to request the current Network key, or an end-
to-end application master key, from another device (e.g., its trust center).

3.2.4.6 Switch Key

The switch-key service provides a secure means for a device (e.g., a trust center) to inform another device
that it should switch to a different active Network key.

3.2.5 Trust Center Role

For security purposes, ZigBee defines the role of trust center. The trust center is the device trusted by
devices within a network to distribute keys for the purpose of network and end-to-end application
configuration management. All members of the network shall recognize exactly one trust center, and there
shall be exactly one trust center in each secure network.

In high-security, commercial applications (see sub-clause 3.7.2.1) a device can be preloaded with the trust
center address and initial master key (e.g., via an unspecified mechanism). Alternatively, if the application
can tolerate a moment of vulnerability, the master key can be sent via an in-band unsecured key transport. If
not preloaded, a device’s trust center defaults to the PAN coordinator or a device designated by the PAN
coordinator.

In low-security, residential applications (see sub-clause 3.7.2.2) a device securely communicates with its
trust center using the Network key, which can be preconfigured or sent via an in-band unsecured key
transport.

The functions performed by the trust center can be subdivided into three sub-roles: trust manager, network
manager, and configuration manager. A device trusts its trust manager to identify the device(s) that take on
the role of its network and configuration manager. A network manager is responsible for the network and
distributes and maintains the Network key to devices it manages. A configuration manager is responsible for
binding two applications and enabling end-to-end security between devices it manages (e.g., by distributing
master keys or link keys). To simplify trust management, these three sub-roles are contained within a single
device – the trust center.

For purposes of trust management, a device shall accept an initial master or Network key originating from
its trust center via unsecured key transport. For purposes of network management, a device shall accept an
initial Network key and updated Network keys only from its trust center (i.e., network manager). For
purpose of configuration, a device shall accept master keys or link keys for the purpose of establishing end-
to-end security between two devices only from its trust center (i.e., configuration manager). Aside from the
initial master key, additional link, master, and Network keys shall only be accepted if they originate from a
device’s trust center via secured key transport.

ZigBee Specification

260 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.3 MAC Layer Security

The MAC layer is responsible for the processing steps needed to securely transmit outgoing MAC frames
and securely receive incoming MAC frames. Upper layers control the security processing operations, by
setting up the appropriate keys and frame counters and establishing which security level to use.

3.3.1 Frame Security

The detailed steps involved in security processing of outgoing and incoming MAC frames are described in
sub-clause 3.3.1.1 and sub-clause 3.3.1.2, respectively.

3.3.1.1 Security Processing of Outgoing Frames

If the MAC layer has a frame, consisting of a header MacHeader and payload Payload, that needs security
protection it shall apply security as follows:

1. Obtain the security material (as specified in sub-clause 3.3.2), including the key, outgoing frame
counter FrameCount, key sequence count SeqCount, and security level identifier (as specified in
Table 169) from the MAC PIB using the following procedure. If the outgoing frame counter has as its
value the 4-octet representation of the integer 232-1 or any of this security material cannot be
determined, then security processing shall fail and no further security processing shall be done on this
frame.

a) First, an attempt shall be made to retrieve the security material and security level identifier associ-
ated with the destination address of the outgoing frame from the macACLEntryDescriptorSet
attribute in the MAC PIB.

b) If the first attempt fails, then security material shall be obtained by using the macDefaultSecurity-
Material attribute from the MAC PIB and the security level identifier shall be obtained from the
MacDefaultSecuritySuite attribute from the MAC PIB.

2. The Security Control Field SecField is the 1-octet field formatted as in sub-clause 3.6.1.1, with the
following settings:

a) The security level subfield shall be set to the security level obtained in Step 1 above;

b) The key identifier subfield shall be set to the 2-bit field '00';

c) The extended nonce subfield shall be set to the 1-bit field '0';

d) The reserved bits shall be set to the 2-bit field '00'.156

3. Execute the CCM* mode encryption and authentication operation, as specified in Annex A, with the
following instantiations:

a) The parameter M shall be obtained from Table 169 corresponding to the security level from step 1;

b) The bit string Key shall be the key obtained from step 1;

c) The nonce N shall be the 13-octet string constructed using the local device’s 64-bit extended
address, SecField from Step 1157, and FrameCount from step 1 (see Figure 72 from [B1]);

d) If the security level requires encryption, the octet string a shall be the string MacHeader and the
octet string m shall be the string Payload. Otherwise, the octet string a shall be the string Mac-
Header || Payload and the octet string m shall be a string of length zero. Note that ZigBee interprets
[B1] to mean that frame counters are authenticated.158

156CCB Comment #195
157Ibid
158CCB Comment #180

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 261

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

4. If the CCM* mode invoked in step 3159 outputs ‘invalid’, security processing shall fail and no further
security processing shall be done on this frame.

5. Let c be the output from step 4160 above. If the security level requires encryption, the secured outgoing
frame shall be MacHeader || FrameCount || SeqCount || c, otherwise the secured outgoing frame shall be
MacHeader || FrameCount || SeqCount || Payload || c.

6. If the secured outgoing frame size is greater than aMaxPHYPacketSize (from [B1]), security processing
shall fail and no further security processing shall be done on this frame.

7. The outgoing frame counter from step 1 shall be incremented by one and stored in the location from
which the security material was obtained in step 1 (i.e., either the macDefaultSecurityMaterial attribute
or the MacDefaultSecuritySuite attribute).

3.3.1.2 Security Processing of Incoming Frames

If the MAC layer receives a secured frame (consisting of a header MacHeader, frame count
ReceivedFrameCount, sequence count ReceivedSeqCount, and payload SecuredPayload) it shall perform
security processing as follows:

1. If ReceivedFrameCount has as value the 4-octet representation of the integer 232-1, security processing
shall fail and no further security processing shall be done on this frame.

2. Obtain the security material (as specified in sub-clause 3.3.2), including the key, optional external frame
counter FrameCount, optional key sequence count SeqCount, and security level identifier (as specified
in Table 169) from the MAC PIB using the following procedure. If the security material cannot be
obtained or if SeqCount exists and does not match ReceivedSeqCount, security processing shall fail and
no further security processing shall be done on this frame.

a) First, an attempt shall be made to retrieve the security material and security level identifier associ-
ated with the source address of the incoming frame from the macACLEntryDescriptorSet attribute
in the MAC PIB.

b) If the first attempt fails, then security material shall be obtained by using the macDefaultSecurity-
Material attribute from the MAC PIB and the security level identifier shall be obtained from the
MacDefaultSecuritySuite attribute from the MAC PIB.

3. If FrameCount exists and if ReceivedFrameCount is less than FrameCount, security processing shall
fail and no further security processing shall be done on this frame.

4. The Security Control Field SecField is the 1-octet field formatted as in Clause 7.1.1, Figure 18, with the
following settings:

a) The security level subfield shall be set to the security level from the MACPIB (as specified in Table
29);

b) The key identifier subfield shall be set to the 2-bit field '00';

c) The extended nonce subfield shall be set to the 1-bit field '0';

d) The reserved bits shall be set to the 2-bit field '00'.161

5. Execute the CCM* mode decryption and authentication checking operation, as specified in Annex A.3,
with the following instantiations:

a) The parameter M shall be obtained from Table 169 corresponding to the security level from step 1;

b) The bit string Key shall be the key obtained from step 2;

159CCB Comment #195
160Ibid
161Ibid

ZigBee Specification

262 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

c) The nonce N shall be the 13-octet string constructed using the 64-bit extended sender address,
SecField from Step 4162, and ReceivedFrameCount from step 1 (see Figure 72 from [B1]);The
nonce N shall be formatted according to the endianness convention used in this specification (the
octet containing the lowest numbered bits first to the octet containing the higher numbered bits).163

d) Parse the octet string SecuredPayload as Payload1 || Payload2, where the right-most string Payload2
is an M-octet string. If this operation fails, security processing shall fail and no further security pro-
cessing shall be done on this frame;

e) If the security level requires encryption, the octet string a shall be the string MacHeader || Received-
FrameCount || ReceivedSeqCount and the octet string c shall be the string SecuredPayload. Other-
wise, the octet string a shall be the string MacHeader || ReceivedFrameCount || ReceivedSeqCount
|| Payload1 and the octet string c shall be the string Payload2.

6. Return the results of the CCM* operation:

a) If the CCM* mode invoked in step 5164 outputs ‘invalid’, security processing shall fail and no fur-
ther security processing shall be done on this frame;

b) Let m be the output of step 5165 above. If the security level requires encryption, set the octet string
UnsecuredMacFrame to the string a || m. Otherwise, set the octet string UnsecuredMacFrame to
the string a;

7. If the optional FrameCount (obtained in step 2) exists, set it to ReceivedFrameCount and update MAC
PIB. UnsecuredMacFrame now represents the unsecured received MAC layer frame.

3.3.2 Security-Related MAC PIB Attributes

The security-related MAC PIB attributes shall be those as defined in Table 72 of [B1]. The security material
used for CCM* mode shall the same as given for CCM mode in Figure 70 of [B1].

For the macDefaultSecurityMaterial attribute from the MAC PIB, the upper layer shall set the symmetric
key, outgoing frame counter, and optional external key sequence counter equal to the corresponding
elements of the network security material descriptor in the nwkSecurityMaterialSet of the NIB referenced by
the nwkActiveKeySeqNumber attribute of the NIB. The optional external frame counter shall not be used and
the optional external key sequence counter shall correspond to the sequence number of the Network key.

For the macACLEntryDescriptorSet attribute from the MAC PIB, the upper layer shall set the symmetric
key, and outgoing frame counter equal to the corresponding elements of the Network key-pair descriptor in
the apsDeviceKeyPairSet of the AIB. The optional external frame counter shall be set to the incoming frame
counter, The key sequence counter shall be set to 0x00, and the optional external key sequence counter shall
not be used.

3.4 NWK Layer Security

The NWK layer is responsible for the processing steps needed to securely transmit outgoing frames and
securely receive incoming frames. Upper layers control the security processing operations, by setting up the
appropriate keys and frame counters and establishing which security level to use. The formatting of all
frames and fields in this specification are depicted in the order in which they are transmitted by the NWK
layer, from left to right, where the leftmost bit is transmitted first in time. Bits within each field are
numbered from 0 (leftmost and least significant) to k-1 (rightmost and most significant), where the length of

162CCB Comment #195
163CCB Comment #98
164CCB Comment #195
165Ibid

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 263

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

the field is k bits. Fields that are longer than a single octet are sent to the next layer in the order from the
octet containing the lowest numbered bits to the octet containing the highest numbered bits.166

3.4.1 Frame Security

The detailed steps involved in security processing of outgoing and incoming NWK frames are described in
sub-clause 3.4.1.1 and sub-clause 3.4.1.2, respectively.

3.4.1.1 Security Processing of Outgoing Frames

If the NWK layer has a frame, consisting of a header NwkHeader and payload Payload, that needs security
protection and nwkSecurityLevel > 0, it shall apply security as follows:

1. Obtain the nwkActiveKeySeqNumber from the NIB and use it to retrieve the active Network key key,
outgoing frame counter OutgoingFrameCounter, and key sequence number KeySeqNumber from the
nwkSecurityMaterialSet attribute in the NIB. Obtain the security level from the nwkSecurityLevel
attribute from the NIB. If the outgoing frame counter has as its value the 4-octet representation of the
integer 232-1, or if the key cannot be obtained, security processing shall fail and no further security
processing shall be done on this frame.

2. Construct auxiliary header AuxiliaryHeader (see sub-clause 3.6.1):

a) The security control field shall be set as follows:

1) The security level sub-field shall be the security level obtained from step 1.
2) The key identifier sub-field shall be set to ‘01’ (i.e., the Network key).
3) The extended nonce sub-field shall be set to 1.

b) The source address field shall be set to the 64-bit extended address of the local device.

c) The frame counter field shall be set to the outgoing frame counter from step 1.

d) The key sequence number field shall be set to the sequence number from step 1.

3. Execute the CCM* mode encryption and authentication operation, as specified in Annex A, with the
following instantiations:

a) The parameter M shall be obtained from Table 169 corresponding to the security level from step 1;

b) The bit string Key shall be the key obtained from step 1;

c) The nonce N shall be the 13-octet string constructed using the security control field from step 2a, the
frame counter field from step 2c, and the source address field from step 2b (see sub-clause 3.6.2.2);

d) If the security level requires encryption, the octet string a shall be the string NwkHeader || Auxiliar-
yHeader and the octet string m shall be the string Payload. Otherwise, the octet string a shall be the
string NwkHeader || AuxiliaryHeader || Payload and the octet string m shall be a string of length
zero.

4. If the CCM* mode invoked in step 3 outputs ‘invalid’, security processing shall fail and no further
security processing shall be done on this frame.

5. Let c be the output from step 3 above. If the security level requires encryption, the secured outgoing
frame shall be NwkHeader || AuxiliaryHeader || c, otherwise the secured outgoing frame shall be
NwkHeader || AuxiliaryHeader || Payload || c.

6. If the secured outgoing frame size is greater than aMaxMACFrameSize (see [B1]), security processing
shall fail and no further security processing shall be done on this frame.

7. The outgoing frame counter from step 1 shall be incremented by one and stored in the
OutgoingFrameCounter element of the network security material descriptor referenced by the

166CCB Comment #98

ZigBee Specification

264 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

nwkActiveKeySeqNumber in the NIB (i.e., the outgoing frame counter value associated with the key
used to protect the frame is updated).

8. Over-write the security level subfield of the security control field by the 3-bit all-zero string '000'.167

3.4.1.2 Security Processing of Incoming Frames

If the NWK layer receives a secured frame (consisting of a header NwkHeader, auxiliary header
AuxiliaryHeader, and payload SecuredPayload) as indicated by the security sub-field of the NWK header
frame control field it shall perform security processing as follows:

1. Determine the security level from the nwkSecurityLevel attribute from the NIB. Over-write the 3-bit
security level subfield of the security control field of the AuxillaryHeader with this value. Determine
the sequence number SequenceNumber, sender address SenderAddress, and received frame count
ReceivedFrameCount from the auxiliary header AuxiliaryHeader (see sub-clause 3.6.1). If
ReceivedFrameCounter has as value the 4-octet representation of the integer 232-1, security processing
shall fail and no further security processing shall be done on this frame.168

2. Obtain the appropriate security material (consisting of the key and other attributes) by matching
SequenceNumber to the sequence number of any key in the nwkSecurityMaterialSet attribute in the
NIB. If the security material cannot be obtained, security processing shall fail and no further security
processing shall be done on this frame. If the sequence number of the received frame belongs to a newer
entry in the nwkSecurityMaterialSet, and the source address of the packet is the trust center, then the
nwkActiveKeySeqNumber shall be set to received sequence number.169

3. If there is an incoming frame count FrameCount corresponding to SenderAddress from the security
material obtained in step 2 and if ReceivedFrameCount is less than FrameCount, security processing
shall fail and no further security processing shall be done on this frame.

4. Execute the CCM* mode decryption and authentication checking operation, as specified in Annex A.3,
with the following instantiations:

a) The parameter M shall obtained from Table 169 corresponding to the security level from step 1;

b) The bit string Key shall be the key obtained from step 2;

c) The nonce N shall be the 13-octet string constructed using the security control, the frame counter,
and the source address fields from AuxiliaryHeader (see sub-clause 3.6.2.2). Note that the security
level subfield of the security control field has been overwritten in step 1 and now contains the value
determined from the nwkSecurityLevel attribute from the NIB.170

d) Parse the octet string SecuredPayload as Payload1 || Payload2, where the right-most string Payload2
is an M-octet string. If this operation fails, security processing shall fail and no further security pro-
cessing shall be done on this frame;

e) If the security level requires encryption, the octet string a shall be the string NwkHeader || Auxiliar-
yHeader and the octet string c shall be the string SecuredPayload. Otherwise, the octet string a
shall be the string NwkHeader || AuxiliaryHeader || Payload1 and the octet string c shall be the
string Payload2.

5. Return the results of the CCM* operation:

a) If the CCM* mode invoked in step 4 outputs ‘invalid’, security processing shall fail and no further
security processing shall be done on this frame;

167CCB Comment #245
168Ibid
169CCB Comment #144
170CCB Comment #245

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 265

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

b) Let m be the output of step 4 above. If the security level requires encryption, set the octet string
UnsecuredNwkFrame to the string a || m. Otherwise, set the octet string UnsecuredNwkFrame to
the string a;

6. Set FrameCount to (ReceivedFrameCount + 1)171 and store both FrameCount and SenderAddress in
the NIB. UnsecuredNwkFrame now represents the unsecured received network frame and security
processing shall succeed. So as to never cause the storage of the frame count and address information to
exceed the available memory, the memory allocated for incoming frame counters needed for NWK
layer security shall be bounded by M*N, where M and N represent the cardinality of
nwkSecurityMaterialSet and nwkNeighborTable in the NIB, respectively.

3.4.2 Secured NPDU Frame

The NWK layer frame format from [B3] consists of a NWK header and NWK payload field. The NWK
header consists of frame control and routing fields. When security is applied to an NPDU frame, the security
bit in the NWK frame control field shall be set to 1 to indicate the presence of the auxiliary frame header.
The format for the auxiliary frame header is given in sub-clause 3.6.1. The format of a secured NWK layer
frame is shown in Figure 67. The auxiliary frame header is situated between the NWK header and payload
fields.

3.4.3 Security-Related NIB Attributes

The NWK PIB contains attributes that are required to manage security for the NWK layer. Each of these
attributes can be read and written using the NLME-GET.request and NLME-SET.request primitives,
respectively. The security-related attributes contained in the NWK PIB are presented in Table 140 through
Table 142.

171CCB Comment #160

Figure 67 Secured NWK layer frame format
Octets: Variable 14 Variable

Original NWK
Header

([B3], Clause 7.1)

Auxiliary
frame header

Encrypted
Payload Encrypted Message Integrity Code (MIC)

Secure frame payload = Output of CCM*

Full NWK header Secured NWK payload

Table 140 NIB security attributes
Attribute Identifier Type Range Description Default

nwkSecurityLevel 0xa0a Octet 0x00-07

The security level for outgo-
ing and incoming NWK
frames. The allowable secu-
rity level identifiers are pre-
sented in Table 169.

0x06

nwkSecurity-Mate-
rialSet 0xa1b

A set of 0, 1, or
2 network
security mate-
rial descrip-
tors. See
Table 141.

Variable

Set of network security
material descriptors capa-
ble of maintaining an active
and alternate Network key. -

ZigBee Specification

266 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

nwkActiveKey-
SeqNumber 0xa2c Octet 0x00-

0xFF

The sequence number of
the active Network key in
nwkSecurityMaterialSet.

0x00

nwkAllFresh 0xa3d Boolean TRUE |
FALSE

Indicates whether incoming
NWK frames must be all
checked for freshness when
the memory for incoming
frame counts is exceeded.

TRUE

nwkSecureAll-
Framese 0xa5 Boolean TRUE |

FALSE

This indicates if security
shall be applied to incoming
and outgoing NWK frames.
If set to 0x01 security pro-
cessing shall be applied to
all incoming and outgoing
frames except data frames
destined for the current
device that have the security
sub-field of the frame control
field set to 0. If this attribute
has a value of 0x01 the
NWK layer shall not relay
frames that have the secu-
rity sub-field of the frame
control field set to 0. The
SecurityEnable parameter
of the NLDE-DATA.request
primitive shall override the
setting of this attribute.

TRUE

aCCB Comment #151
bIbid
cIbid
dIbid
eIbid

Table 141 Elements of the network security material descriptor
Name Type Range Description Default

KeySeqNumber Octet 0x00-0xFF

A sequence number assigned to a
Network key by the trust center and

used to distinguish Network keys
for purposes of key updates, and

incoming frame security operations.

00

OutgoingFrame-
Counter

Ordered set
of 4 octets

0x00000000-
0xFFFFFFFF

Outgoing frame counter used for
outgoing frames. 0x00000000

IncomingFrame-
CounterSet

Set of incom-
ing frame
counter

descriptor
values. See
Table 142.

Variable
Set of incoming frame counter val-

ues and corresponding device
addresses.

Null set

Key Ordered set
of 16 octets - The actual value of the key. -

Table 140 NIB security attributes

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 267

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5 APS Layer Security

The APS layer is responsible for the processing steps needed to securely transmit outgoing frames, securely
receive incoming frames, and securely establish and manage cryptographic keys. Upper layers control the
management of cryptographic keys by issuing primitives to the APS layer. Table 143 lists the primitives
available for key management and maintenance. Upper layers also determine which security level to use
when protecting outgoing frames. The formatting of all frames and fields in this specification are depicted in
the order in which they are transmitted by the NWK layer, from left to right, where the leftmost bit is
transmitted first in time. Bits within each field are numbered from 0 (leftmost and least significant) to k-1
(rightmost and most significant), where the length of the field is k bits. Fields that are longer than a single
octet are sent to the next layer in the order from the octet containing the lowest numbered bits to the octet
containing the highest numbered bits.172

Table 142 Elements of the incoming frame counter descriptor
Name Type Range Description Default

SenderAddress Device
address

Any valid 64-bit
address

Extended device address. Device specific

IncomingFrame-
Counter

Ordered set of
4 octets

0x00000000-
0xFFFFFFFF

Incoming frame counter
used for incoming frames. 0x00000000

Table 143 The APS layer security primitives
APSME

Security Primitives Request Confirm Indication Response Description

APSME-ESTABLISH-
KEY 3.5.2.1 3.5.2.2 3.5.2.3 3.5.2.4

Establish link key with
another ZigBee device
using the SKKE method.

APSME-TRANS-
PORT-KEY 3.5.3.1 - 3.5.3.2 -

Transport security mate-
rial from one device to
another.

APSME-
UPDATE-DEVICE 3.5.4.1 - 3.5.4.2 -

Notifies the trust center
when a new device joined
or an existing device left
the network.

APSME-
REMOVE-DEVICE 3.5.5.1 - 3.5.5.2 -

Used by the trust center to
notify a router that one of
the router’s child devices
should be removed from
the network.

APSME-REQUEST-
KEY 3.5.6.1 - 3.5.6.2 -

Used by a device to
request that the trust cen-
ter send an application
master key or current Net-
work key.

APSME-
SWITCH-KEY 3.5.7.1 - 3.5.7.2 -

Used by the trust center to
tell a device to switch to a
new Network key.

172CCB Comment #98

ZigBee Specification

268 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.1 Frame Security

The detailed steps involved in security processing of outgoing and incoming APS frames are described in
sub-clause 3.5.1.1 and sub-clause 3.5.1.2, respectively.

3.5.1.1 Security Processing of Outgoing Frames

If the APS layer has a frame, consisting of a header ApsHeader and payload Payload, that needs security
protection and nwkSecurityLevel > 0, it shall apply security as follows:

1. Obtain the security material and key identifier KeyIdentifier using the following procedure. If security
material or key identifier cannot be determined, then security processing shall fail and no further
security processing shall be done on this frame.

a) If the frame is a result of a APSDE-DATA.request primitive:

i) If the useNwkKeyFlag parameter is TRUE, then security material shall be obtained by
using the nwkActiveKeySeqNumber from the NIB to retrieve the active Network key, out-
going frame counter, and sequence number from the nwkSecurityMaterialSet attribute in
the NIB. KeyIdentifier shall be set to ‘01’ (i.e., the Network key).

ii) Otherwise, the security material associated with the destination address of the outgoing
frame shall be obtained from the apsDeviceKeyPairSet attribute in the AIB. KeyIdentifier
shall be set to ‘00’ (i.e., a data key). Note, if the frame is being transmitted using indirect
addressing, the destination address shall be the address of the binding manager.

b) If the frame is a result of an APS command:

i) First, an attempt shall be made to retrieve the security material associated with the destina-
tion address of the outgoing frame from the apsDeviceKeyPairSet attribute in the AIB. For
all cases, except transport-key commands, KeyIdentifier shall be set to ‘00’(i.e., a data
key). For the case of transport-key commands, KeyIdentifier shall be set to ‘02’ (i.e., the
key-transport key) when transporting a Network key and shall be set to ‘03’ (i.e., the key-
load key) when transporting an application link key, application master key, or trust center
master key. See sub-clause 3.6.3 for a description of the key-transport and key-load keys.

ii) If the first attempt fails, then security material shall be obtained by using the nwkAc-
tiveKeySeqNumber from the NIB to retrieve the active Network key, outgoing frame
counter, and sequence number from the nwkSecurityMaterialSet attribute in the NIB. Key-
Identifier shall be set to ‘01’ (i.e., the Network key).

2. If the key identifier is equal to 01 (i.e. network key), the APS layer shall first verify that the NWK layer
is not also applying security. If the NWK layer is applying security, then the APS layer shall not apply
any security. The APS layer can determine that the NWK layer is applying security by verifying that the
value of the nwkSecureAllFrames attribute of the NIB has a value of TRUE and the nwkSecurityLevel
NIB attribute has a non-zero value.173

3. Extract the outgoing frame counter (and, if KeyIdentifier is 01, the key sequence number) from the
security material obtained from step 1. If the outgoing frame counter has as its value the 4-octet
representation of the integer 232-1, or if the key cannot be obtained, security processing shall fail and no
further security processing shall be done on this frame.

4. Obtain the security level from the nwkSecurityLevel attribute from the NIB. If the frame is a result of an
APS command, the security level shall be forced to 7 (ENC-MIC-128).

5. Construct auxiliary header AuxiliaryHeader (see sub-clause 3.6.1):

a) The security control field shall be set as follows:

i) The security level sub-field shall be the security level obtained from step 3.

173CCB Comment #145

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 269

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

ii) The key identifier sub-field shall be set to KeyIdentifier.
iii) The extended nonce sub-field shall be set to 0.

b) The frame counter field shall be set to the outgoing frame counter from step 2.

c) If KeyIdentifier is 1, the key sequence number field shall be present and set to the key sequence
number from step 2. Otherwise, the key sequence number field shall not be present.

6. Execute the CCM* mode encryption and authentication operation, as specified in Annex A.2, with the
following instantiations:

a) The parameter M shall obtained from Table 169 corresponding to the security level from step 3;

b) The bit string Key shall be the key obtained from step 1;

c) The nonce N shall be the 13-octet string constructed using the security control and frame counter
fields from step 4 and the 64-bit extended address of the local device (see sub-clause 3.6.2.2);

d) If the security level requires encryption, the octet string a shall be the string ApsHeader || Auxiliary-
Header and the octet string m shall be the string Payload. Otherwise, the octet string a shall be the
string ApsHeader || AuxiliaryHeader || Payload and the octet string m shall be a string of length
zero.

7. If the CCM* mode invoked in step 3 outputs ‘invalid’, security processing shall fail and no further
security processing shall be done on this frame.

8. Let c be the output from step 3 above. If the security level requires encryption, the secured outgoing
frame shall be ApsHeader || AuxiliaryHeader || c, otherwise the secured outgoing frame shall be
ApsHeader || AuxiliaryHeader || Payload || c.

9. If the secured outgoing frame size will result in the MSDU being greater than aMaxMACFrameSize
octets174 (see [B1]), security processing shall fail and no further security processing shall be done on
this frame.

10. The outgoing frame counter from step 1 shall be incremented and stored in the appropriate location(s)
of the NIB, AIB, and MAC PIB corresponding to the key that was used to protect the outgoing frame.

11. Over-write the security level subfield of the security control field by the 3-bit all-zero string '000'.175

3.5.1.2 Security Processing of Incoming Frames

If the APS layer receives a secured frame (consisting of a header ApsHeader, auxiliary header
AuxiliaryHeader, and payload SecuredPayload) as indicated by the security sub-field of the APS header
frame control field it shall perform security processing as follows:

1. Determine the sequence number SequenceNumber, key identifier KeyIdentifier, and received frame
counter value ReceivedFrameCounter from the auxiliary header AuxiliaryHeader. If
ReceivedFrameCounter is the 4-octet representation of the integer 232-1, security processing shall fail
and no further security processing shall be done on this frame.176

2. Determine the source address SourceAddress from the address-map table in the AIB, using the source
address in the APS frame as the index. If the source address is incomplete or unavailable, security
processing shall fail and no further security processing shall be done on this frame. If the delivery-mode
sub-field of the frame control field of ApsHeader has a value of 1 (i.e., indirect addressing), the source
address shall be the address of the binding manager, as described in the APS specification [B7].

3. Obtain the appropriate security material in the following manner. If the security material cannot be
obtained, security processing shall fail and no further security processing shall be done on this frame.

174CCB Comment #366
175CCB Comment #245
176Ibid

ZigBee Specification

270 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

a) If KeyIdentifier is ‘00’ (i.e., data key), the security material associated with the SourceAddress of the
incoming frame shall be obtained from the apsDeviceKeyPairSet attribute in the AIB.

b) If KeyIdentifier is ‘01’ (i.e., Network key), the security material shall be obtained by matching
SequenceNumber to the sequence number to the sequence number of any key in the nwkSecurity-
MaterialSet attribute in the NIB. If the sequence number of the received frame belongs to a newer
entry in the nwkSecurityMaterialSet, then the nwkActiveKeySeqNumber may be set to the received
sequence number. If the security material associated with the SourceAddress of the incoming frame
can be obtained from the attribute in the AIB, then security processing shall fail and no further
security processing shall be done on this frame.177

c) If KeyIdentifier is ‘02’ (i.e., key-transport key), the security material associated with the SourceAd-
dress of the incoming frame shall be obtained from the apsDeviceKeyPairSet attribute in the AIB
and the key for this operation shall be derived from the security material as specified in sub-clause
3.6.3 for the key-transport key.

d) If KeyIdentifier is ‘03’ (i.e., key-load key), the security material associated with the SourceAddress
of the incoming frame shall be obtained from the apsDeviceKeyPairSet attribute in the AIB and the
key for this operation shall be derived from the security material as specified in sub-clause 3.6.3 for
the key-load key.

4. If there is an incoming frame count FrameCount corresponding to SourceAddress from the security
material obtained in step 3 and if ReceivedFrameCount is less than FrameCount, security processing
shall fail and no further security processing shall be done on this frame.

5. Determine the security level SecLevel as follows. If the frame type subfield of the frame control field of
ApsHeader indicates an APS data frame, then SecLevel shall be set to the nwkSecurityLevel attribute in
the NIB. Otherwise SecLevel shall be set to 7 (ENC-MIC-128). Overwrite the security level subfield of
the security control field in the AuxillaryHeader with the value of SecLevel.178

6. Execute the CCM* mode decryption and authentication checking operation, as specified in Annex A.3,
with the following instantiations:

a) The parameter M shall obtained from Table 169 corresponding to the security level from step 5;

b) The bit string Key shall be the key obtained from step 3;

c) The nonce N shall be the 13-octet string constructed using the security control and frame counter
fields from AuxiliaryHeader, and SourceAddress from step 2 (see sub-clause 3.6.2.2);

d) Parse the octet string SecuredPayload as Payload1 || Payload2, where the right-most string Payload2
is an M-octet string. If this operation fails, security processing shall fail and no further security pro-
cessing shall be done on this frame;

e) If the security level requires encryption, the octet string a shall be the string ApsHeader || Auxiliary-
Header and the octet string c shall be the string SecuredPayload. Otherwise, the octet string a shall
be the string ApsHeader || AuxiliaryHeader || Payload1 and the octet string c shall be the string
Payload2.

7. Return the results of the CCM* operation:

a) If the CCM* mode invoked in step 4 outputs ‘invalid’, security processing shall fail and no further
security processing shall be done on this frame;

b) Let m be the output of step 4 above. If the security level requires encryption, set the octet string
UnsecuredApsFrame to the string a || m. Otherwise, set the octet string UnsecuredApsFrame to the
string a;

177CCB Comment #146
178CCB Comment #245

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 271

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8. Set FrameCount to (ReceivedFrameCount + 1)179 and store both FrameCount and SourceAddress in
the appropriate security material as obtained in step 3. If storing this frame count and address
information will cause the memory allocation for this type of information to be exceeded and the
nwkAllFresh attribute in the NIB is TRUE, then security processing shall fail and no further security
processing shall be done on this frame; otherwise security processing shall succeed.

3.5.2 Key-Establishment Services

The APSME provides services that allow two devices to mutually establish a link key. Initial trust
information (e.g., a master key) must be installed in each device prior to running the key establishment
protocol (see sub-clause 3.5.3 for mechanisms to provision initial trust information).

3.5.2.1 APSME-ESTABLISH-KEY.request

The APSME-ESTABLISH-KEY.request primitive is used for initiating a key-establishment protocol. This
primitive can be used when there is a need to securely communicate with another device. One device will act
as an initiator device and another device will act as the responder. The initiator shall start the key-
establishment protocol by issuing the APSME-ESTABLISH-KEY.request with parameters indicating the
address of the responder device and which key-establishment protocol to use (i.e., SKKE direct or indirect).

3.5.2.1.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 144 specifies the parameters for the APSME-ESTABLISH-KEY.request primitive.

179CCB Comment #160

APSME-ESTABLISH-KEY.request {
ResponderAddress,
UseParent,
ResponderParentAddress,
KeyEstablishmentMethod
}

Table 144 APSME-ESTABLISH-KEY.request parameters
Parameter Name Type Valid Range Description

Responder-Address Device
Address

Any valid
64-bit

address

The extended 64-bit address of the responder
device.

ZigBee Specification

272 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.2.1.2 When generated

A higher layer on an initiator device shall generate this primitive when it requires a link key to be established
with a responder device. If the initiator device wishes to use the responder’s parent as a liaison (for NWK
security purposes), it shall set the UseParent parameter to TRUE and shall set the ResponderParentAddress
parameter to the 64-bit extended address of the responder’s parent.

3.5.2.1.3 Effect on receipt

The receipt of an APSME-ESTABLISH-KEY.request primitive, with the KeyEstablishmentMethod
parameter equal to SKKE, shall cause the APSME to execute the SKKE protocol, described in sub-clause
3.5.2.6. The local APSME shall act as the initiator of this protocol, the APSME indicated by the
ResponderAddress parameter shall act as the responder of this protocol, and the UseParent parameter will
control whether the messages are sent indirectly via the responder’s parent device given by the
ResponderParentAddress parameter.

3.5.2.2 APSME-ESTABLISH-KEY.confirm

This primitive is issued to the ZDO upon completion or failure of a key-establishment protocol.

3.5.2.2.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 145 specifies the parameters of the APSME-ESTABLISH-KEY.confirm primitive. Table 149 gives a
description of some codes that can be returned in the Status parameter of this primitive. In addition to these
codes, if when sending one of the protocol messages, an NLDE-DATA.confirm primitive with a Status

UseParent Boolean TRUE |
FALSE

This parameter indicates if the responder’s
parent shall be used to forward messages
between the initiator and responder devices:

TRUE: Use parent.

FALSE: Do not use parent.

Responder-ParentAd-
dress

Device
Address

Any valid
64-bit

address

If the UseParent is TRUE, then Responder-
ParentAddress parameter shall contain the
extended 64-bit address of the responder’s
parent device. Otherwise, this parameter is not
used and need not be set.

KeyEstablishment-
Method Integer 0x00 - 0x03

The requested key-establishment method shall
be one of the following:

0x00 = SKKE method.

0x01-0x03: reserved.

APSME-ESTABLISH-KEY.confirm {
Address,
Status
}

Table 144 APSME-ESTABLISH-KEY.request parameters

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 273

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

parameter set to a value other than SUCCESS is issued, the Status parameter of the APSME-ESTABLISH-
KEY.confirm primitive shall be set to that received from the NWK layer.

3.5.2.2.2 When generated

The APSME in both the responder and initiator devices shall issue this primitive to the ZDO upon
completion of a key-establishment protocol.

3.5.2.2.3 Effect on receipt

If key establishment is successful, the AIB of the initiator and responder shall be updated with the new link
key and the initiator shall be able to securely communicate with the responder. If the key establishment was
not successful, then the AIB shall not be changed.

3.5.2.3 APSME-ESTABLISH-KEY.indication

The APSME in the responder shall issue this primitive to its ZDO when it receives an initial key-
establishment message (e.g., an SKKE-1 frame) from an initiator.

3.5.2.3.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 146 specifies the parameters of the APSME-ESTABLISH-KEY.indication primitive.

Table 145 APSME-ESTABLISH-KEY.confirm parameters
Name Type Valid Range Description

Address Device
Address Any valid 64-bit address

The extended 64-bit address of the device
with which the key-establishment protocol
was executed.

Status Enumeration

Value given by Table 149 or
any status value returned
from the NLDE-DATA.con-

firm primitive.

This parameter indicates the final status of
the key-establishment protocol.

APSME-ESTABLISH-KEY.indication {
InitiatorAddress,
KeyEstablishmentMethod
}

Table 146 APSME-ESTABLISH-KEY.indication parameters
Name Type Valid Range Description

InitiatorAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the initiator
device.

KeyEstablishmentMethod Integer 0x00 - 0x03

The requested key-establishment method
shall be one of the following:

0x00 = SKKE method.

0x01-0x03: reserved.

ZigBee Specification

274 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.2.3.2 When generated

The APSME in the responder device shall issue this primitive to the ZDO when a request to start a key-
establishment protocol (e.g., an SKKE-1 frame) is received from an initiator and a master key associated
with the initiator device is present in the AIB.

3.5.2.3.3 Effect on receipt

Upon receiving the APSME-ESTABLISH-KEY.indication primitive, the ZDO may use the
KeyEstablishmentMethod and InitiatorAddress parameters to determine whether to establish a key with the
initiator. The ZDO shall respond using the APSME-ESTABLISH-KEY.response primitive.

3.5.2.4 APSME-ESTABLISH-KEY.response

The ZDO of the responder device shall use the APSME-ESTABLISH-KEY.response primitive to respond to
an APSME-ESTABLISH-KEY.indication primitive. The ZDO determines whether to continue with the key
establishment or halt it. This decision is indicated in the Accept parameter of the APSME-ESTABLISH-
KEY.response primitive.

3.5.2.4.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 147 specifies the parameters of the APSME-ESTABLISH-KEY.response primitive

3.5.2.4.2 When generated

The APSME-ESTABLISH-KEY.response primitive shall be generated by the ZDO and provided to the
APSME following a request from an initiator device to start a key-establishment protocol (i.e., after receipt
of an APSME-ESTABLISH-KEY.indication). This primitive provides the responder's ZDO with an
opportunity to determine whether to accept or reject a request to establish a key with a given initiator.

3.5.2.4.3 Effect on receipt

If the Accept parameter is TRUE, then the APSME of the responder will attempt to execute the key
establishment protocol indicated by the KeyEstablishmentMethod parameter. If KeyEstablishmentMethod is
equal to SKKE, the APSME shall execute the SKKE protocol, described in sub-clause 3.5.2.6. The local

APSME-ESTABLISH-KEY.response {
InitiatorAddress,
Accept
}

Table 147 APSME-ESTABLISH-KEY.response parameters .
Name Type Valid Range Description

InitiatorAddress Device
Address

Any valid
64-bit address

The extended 64-bit address of the device that
initiated key establishment.

Accept Boolean TRUE |
FALSE

This parameter indicates the response to an ini-
tiator's request to execute a key-establishment
protocol. The response shall be either:

TRUE = Accept.

FALSE = Reject.

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 275

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

APSME shall act as the responder of this protocol and the APSME indicated by the InitiatorAddress
parameter shall act as the initiator of this protocol.

If the Accept parameter is FALSE, the local APSME shall halt and erase all intermediate data pertaining to
the pending key-establishment protocol.

3.5.2.5 Data Service Message Sequence Chart

Figure 68 illustrates the sequence of primitives necessary for a successful key establishment between two
devices.

Figure 68 Sequence chart for successful APSME-ESTABLISH-KEY primitives

3.5.2.6 The SKKE Protocol

The APSME on the initiator and responder execute the symmetric-key key-agreement scheme instantiated in
B.2.1 and specified in B.7. The shared key, as specified in B.7 prerequisite step 2, shall be the master key
shared between the initiator and responder devices as obtained from the appropriate master key element in
the DeviceKeyPairSet attribute in the AIB. The messages sent during the scheme specified in B.7 shall be
assigned to the frame names given in Table 148. The formats for these SKKE frames are given in sub-clause
3.5.9.1. The initiator device is responsible for sending the SKKE-1 and SKKE-3 frames and the responder
device is responsible for sending the SKKE-2 and SKKE-4 frames. Additionally, if the UseParent parameter
to the APSME-ESTABLISH-KEY.request primitive is TRUE, the responder device’s parent (as indicated
by the ResponderParentAddress parameter to the APSME-ESTABLISH-KEY.request primitive) shall act as
a liaison and forward messages between the initiator and responder devices.

During the key-establishment scheme, if the responder or initiator device detects any error condition listed
in Table 149, the scheme shall be aborted and the local APSME shall issue the APSME-ESTABLISH-
KEY.confirm primitive with the Status parameter set as indicated in Table 149. If no error conditions occur
(i.e., the key-agreement scheme outputs 'valid'), then the initiator and responder shall consider the derived
key (i.e., KeyData) as their newly shared link key. Both the initiator and responder shall update or add this
link key to their AIB, set the corresponding incoming and outgoing frame counts to zero, and issue the
APSME-ESTABLISH-KEY.confirm primitive with the Status parameter set to SUCCESS.

Table 148 Mapping of frame names to symmetric-key key agreement scheme messages
Frame
Name Description Reference

SKKE-1 Sent by initiator during action step 1. (B.7.1) 3.5.2.6.2

5. APSME-ESTABLISH-KEY.confirm

2. APSME-ESTABLISH-KEY.indication

3. APSME-ESTABLISH-KEY.response

Initiator

Device
Responder

Device

ZDO APSME APSME

1. APSME-ESTABLISH-KEY.request

4. APSME-ESTABLISH-KEY.confirm

ZDO

SKKE

Protocol

ZigBee Specification

276 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.2.6.1 Generating and sending the initial SKKE-1 frame

The SKKE protocol begins with the initiator device sending an SKKE-1 frame. The SKKE-1 command
frame shall be constructed as specified in sub-clause 3.5.9.1.

If the UseParent parameter to the APSME-ESTABLISH-KEY.request primitive is FALSE, the initiator
device shall begin the protocol by sending this SKKE-1 frame directly to the responder device (as indicated
by the ResponderAddress parameter to the APSME-ESTABLISH-KEY.request primitive). Otherwise, the
initiator device shall begin the protocol by sending this SKKE-1 frame to the responder device’s parent (as
indicated by the ResponderParentAddress parameter to the APSME-ESTABLISH-KEY.request primitive).
The SKKE-1 frame shall be sent using the NLDE-DATA.request primitive with NWK layer security set to
the default NWK layer security level.

3.5.2.6.2 On receipt of the SKKE-1 frame

If the responder address field of the SKKE-1 frame does not equal the local device address, the APSME
shall perform the following steps:

SKKE-2 Sent by responder during action step 2. (B.7.2) 3.5.2.6.3

SKKE-3 Sent by initiator during action step 11. (B.7.1) 3.5.2.6.4

SKKE-4 Sent by responder during action step 8. (B.7.2) 3.5.2.6.5

Table 149 Mapping of symmetric-key key agreement error conditions to status codes
Status Description Status Code Value

No errors occur SUCCESS 0x00

An invalid parameter was input to one of the key establish-
ment primitives. INVALID_PARAMETER 0x01

No master key is available NO_MASTER_KEY 0x02

Challenge is invalid:
Initiator during action step 4. (B.7.1)
Responder during action step 1. (B.7.2)

INVALID_CHALLENGE 0x03

SKG outputs invalid:
Initiator during action step 5. (B.7.1)
Responder during action step 3. (B.7.2)

INVALID_SKG 0x04

MAC transformation outputs invalid:
Initiator during action step 11. (B.7.1)
Responder during action step 7. (B.7.2)

INVALID_MAC 0x05

Tag checking transformation outputs invalid:
Initiator during action step 9. (B.7.1)
Responder during action step 10. (B.7.2)

INVALID_KEY 0x06

Either the initiator or responder waits for an expected incom-
ing message for time greater than the apsSecurityTimeOut-
Period attribute of the AIB.

TIMEOUT 0x07

Either the initiator or responder receives an SKKE frame out
of order. BAD_FRAME 0x08

Table 148 Mapping of frame names to symmetric-key key agreement scheme messages

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 277

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

1. If the device given by the responder address field is not a child of the local device, the SKKE-1 frame
shall be discarded.

2. Otherwise, the APSME of the local device shall send the SKKE-1 frame to the responder device using
the NLDE-DATA.request primitive, with the DestAddr parameter set to the 16-bit address
corresponding to the 64-bit address in the responder address field of the SKKE-1 frame, the
DiscoverRoute parameter set to 0x01180, and the SecurityEnable parameter set to FALSE.

3. Otherwise, the APSME shall perform the following steps:

4. If the device does not have a master key corresponding to the initiator address field, the SKKE-1
frame shall be discarded and the APSME-ESTABLISH-KEY.confirm primitive shall be issued with the
Status parameter set to NO_MASTER_KEY (see Table 149). The APSME should halt processing for
this SKKE protocol.

5. Otherwise, the APSME shall issue an APSME-ESTABLISH-KEY.indication primitive with the
InitiatorAddress parameter set to the initiator address field of the SKKE-1 frame and the
KeyEstablishmentMethod parameter set to 0 (i.e., the SKKE protocol).

6. After issuing the APSME-ESTABLISH-KEY.indication primitive, and upon receipt of the
corresponding APSME-ESTABLISH-KEY.response primitive, the APSME shall evaluate the
InitiatorAddress and Accept parameters of the received APSME-ESTABLISH-KEY.response
primitive. If the InitiatorAddress parameter is set to the initiator address of the SKKE-1 frame and the
Accept parameter set to FALSE, the APSME shall halt the SKKE protocol and discard the SKKE-1
frame.

7. Otherwise, it shall construct an SKKE-2 frame as specified in sub-clause 3.5.9.1. If the source of the
SKKE-1 frame indicates the same device as the initiator address field of the SKKE-1 frame, the device
shall send this SKKE-2 frame directly to the initiator device using the NLDE-DATA.request primitive,
with the DestAddr parameter set to the source of the SKKE-1 frame, the DiscoverRoute parameter set to
0x01181, and the SecurityEnable parameter set to TRUE. Otherwise, the device shall send the SKKE-2
frame to its parent using the NLDE-DATA.request primitive, with the DiscoverRoute parameter set to
182, and the SecurityEnable parameter set to FALSE.

3.5.2.6.3 On receipt of the SKKE-2 frame

If the initiator address field of the SKKE-2 frame does not equal the local device address, the APSME shall
perform the following steps:

1. If the device given by the responder address field is not a child of the local device, the SKKE-2 frame
shall be discarded.

2. Otherwise, the device shall send the SKKE-2 to the initiator device using the NLDE-DATA.request
primitive with NWK layer set to the default level.

Otherwise, the device shall construct an SKKE-3 frame as specified in sub-clause 3.5.9.1. If the source of
the SKKE-2 frame is the same as the responder address field of the SKKE-2 frame, the device shall send this
SKKE-3 frame directly to the responder device. Otherwise, the device shall send the SKKE-3 frame to the
responder’s parent. The SKKE-3 frame shall be sent using the NLDE-DATA.request primitive with NWK
layer security set to the default NWK layer security level.

180CCB Comment #256
181Ibid
182Ibid

ZigBee Specification

278 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.2.6.4 On receipt of the SKKE-3 frame

If the responder address field of the SKKE-3 frame does not equal the local device address, the APSME
shall perform the following steps:

1. If the device given by the responder address field is not a child of the local device, the SKKE-3 frame
shall be discarded.

2. Otherwise, the device shall send the SKKE-3 to the responder device using the NLDE-DATA.request
primitive with NWK layer security disabled.

Otherwise, the device shall process the SKKE-3 data field and if the protocol was not a success it shall issue
an APSME-ESTABLISH-KEY.confirm primitive with the Address parameter set to the initiator’s address
and the Status parameter set appropriately.

If, from the device’s perspective, the protocol was a success, the device shall construct an SKKE-4 frame as
specified in sub-clause 3.5.9.1. If the source of the SKKE-3 frame is the same as the initiator address field of
the SKKE-3 frame, the device shall send this SKKE-4 frame directly to the initiator device using the NLDE-
DATA.request primitive with NWK layer security set to the default level. Otherwise, the device shall send
the SKKE-4 frame to its parent using the NLDE-DATA.request primitive with NWK layer security
disabled. Finally, the device shall issue an APSME-ESTABLISH-KEY.confirm primitive with the Address
parameter set the initiator’s address and the Status parameter set to success.

3.5.2.6.5 On receipt of the SKKE-4 frame

If the initiator address field of the SKKE-4 frame does not equal the local device address, the APSME shall
perform the following steps:

1. If the device given by the responder address field is not a child of the local device, the SKKE-4 frame
shall be discarded.

2. Otherwise, the APSME of the local device shall send the SKKE-4 to the initiator device using the
NLDE-DATA.request primitive with NWK layer set to the default level.

Otherwise, the APSME shall process the SKKE-4 frame and issue an APSME-ESTABLISH-KEY.confirm
primitive with the Address parameter set the responder’s address and the Status parameter set appropriately.

3.5.3 Transport-Key Services

The APSME provides services that allow an initiator to transport keying material to a responder. The
different types of keying material that can be transported are shown in Table 151.

3.5.3.1 APSME-TRANSPORT-KEY.request

The APSME-TRANSPORT-KEY.request primitive is used for transporting a key to another device.

3.5.3.1.1 Semantics of the service primitive

This primitive shall provide the following interface:

APSME-TRANSPORT-KEY.request {
DestAddress,
KeyType,
TransportKeyData
}

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 279

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Table 150 specifies the parameters for the APSME-TRANSPORT-KEY.request primitive.

Table 150 APSME-TRANSPORT-KEY.request parameters
Parameter Name Type Valid Range Description

DestAddress Device
address

Any valid
64-bit address

The extended 64-bit address of the destination
device.

KeyType Integer 0x00 – 0x03 Identifies the type of key material that should
be transported. See Table 151.

TransportKeyData Variable Variable

The key being transported along with identifi-
cation and usage parameters. The type of this
parameter depends on the KeyType parameter
as follows:

KeyType = 0x00 see Table 152

KeyType = 0x01 see Table 153

KeyType = 0x02 see Table 154

KeyType = 0x03 see Table 154

Table 151 KeyType parameter of the transport-key primitive
Enumeration Value Description

Trust-center master key 0x00 Indicates the key is a master key which is used to set up link keys
between the trust center and another device.

Network key 0x01 Indicates the key is a Network key.

Application master key 0x02 Indicates the key is a master key which is used to set up link keys
between two devices.

Application link key 0x03 Indicates the key is a link key which is used as a basis of security
between two devices.

Table 152 TransportKeyData parameter for a trust-center master key
Parameter Name Type Valid Range Description

ParentAddress Device
address

Any valid
64-bit address

The extended 64-bit address of the parent of the
destination device given by the DestAddress
parameter.

TrustCenter-Master-
Key

Set of 16
octets Variable The trust center master key.

ZigBee Specification

280 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.3.1.2 When generated

The ZDO on an initiator device shall generate this primitive when it requires a key to be transported to a
responder device.

3.5.3.1.3 Effect on receipt

The receipt of an APSME-TRANSPORT-KEY.request primitive shall cause the APSME to create a
transport-key command packet (see sub-clause 3.5.9.2)

If the KeyType parameter is 0x00 (i.e., trust center master key), the key descriptor field of the transport-key
command shall be set as follows. The key sub-field shall be set to the Key sub-parameter of the
TransportKeyData parameter, the destination address sub-field shall be set to the DestinationAddress
parameter, and the source address sub-field shall be set to the local device address. This command frame
shall be security protected as specified in sub-clause 3.5.1.1 and then, if security processing succeeds, sent to

Table 153 TransportKeyData parameter for a Network key
Parameter Name Type Valid Range Description

KeySeqNumber Octet 0x00-0xFF

A sequence number assigned to a Network key by
the trust center and used to distinguish Network
keys for purposes of key updates, and incoming
frame security operations.

NetworkKey Set of 16
octets Variable The Network key.

UseParent Boolean TRUE | FALSE

This parameter indicates if the destination device’s
parent shall be used to forward the key to the des-
tination device:

TRUE: Use parent

FALSE: Do not use parent

ParentAddress Device
address

Any valid 64-bit
address

If the UseParent is TRUE, then ParentAddress
parameter shall contain the extended 64-bit
address of the destination device’s parent device.
Otherwise, this parameter is not used and need not
be set.

Table 154 TransportKeyData parameter for an application master or link key
Parameter Name Type Valid Range Description

PartnerAddress Device
address

Any valid 64-bit
address

The extended 64-bit address of the device that was
also sent this master key.

Initiator Boolean TRUE | FALSE

This parameter indicates if the destination device of
this master key requested it:

TRUE: If the destination requested the key.

FALSE: otherwise.

Key Set of 16
octets Variable The master or link key (as indicated by the Key-

Type parameter).

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 281

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

the device specified by the ParentAddress sub-parameter of the TransportKeyData parameter by issuing a
NLDE-DATA.request primitive.

If the KeyType parameter is 0x01 (i.e., Network key), the key descriptor field of the transport-key command
shall be set as follows. The key sub-field shall be set to the Key sub-parameter of the TransportKeyData
parameter, the sequence number sub-field shall be set to the KeySeqNumber sub-parameter of the
TransportKeyData parameter, the destination address sub-field shall be set to the DestinationAddress
parameter, and the source address sub-field shall be set to the local device address. This command frame
shall be security protected as specified in sub-clause 3.5.1.1 and then, if security processing succeeds, sent to
the device specified by the ParentAddress sub-parameter of the TransportKeyData parameter (if the
UseParent sub-parameter of the TransportKeyData parameter is TRUE183) or the DestinationAddress
parameter (if the UseParent sub-parameter of the TransportKeyData parameter is FALSE184) by issuing a
NLDE-DATA.request primitive.

If the KeyType parameter is 0x02 or 0x03 (i.e., an application master or link key), the key descriptor field of
the transport-key command shall be set as follows. The key sub-field shall be set to the Key sub-parameter of
the TransportKeyData parameter, the partner address sub-field shall be set to the PartnerAddress sub-
parameter of the TransportKeyData parameter, and the initiator sub-field shall be set 1 (if the Initiator sub-
parameter of the TransportKeyData parameter is TRUE) or 0 (if the Initiator sub-parameter of the
TransportKeyData parameter is FALSE). This command frame shall be security protected as specified in
sub-clause 3.5.1.1 and then, if security processing succeeds, sent to the device specified by the
DestinationAddress parameter by issuing a NLDE-DATA.request primitive.

3.5.3.2 APSME-TRANSPORT-KEY.indication

The APSME-TRANSPORT-KEY.indication primitive is used to inform the ZDO of the receipt of keying
material.

3.5.3.2.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 155 specifies the parameters of the APSME-TRANSPORT-KEY.indication primitive.

183CCB Comment #141
184Ibid

APSME-TRANSPORT-KEY.indication {
SrcAddress,
KeyType,
TransportKeyData
}

Table 155 APSME-TRANSPORT-KEY.indication parameters
Name Type Valid Range Description

ZigBee Specification

282 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.3.2.2 When generated

The APSME shall generate this primitive when it receives a transport-key command that is successfully
decrypted and authenticated, as specified in sub-clause 3.5.1.2, that has the key type field set to 2 or 3 (i.e.,
application link or master key).

Alternatively, the APSME shall generate this primitive when it receives a transport-key command that is
successfully decrypted and authenticated, as specified in sub-clause 3.5.1.2, that has the key type field set to
0 or 1 (i.e., a trust center master key or Network key) and the destination address sub-field of the key
descriptor field is equal to the local address.

3.5.3.2.3 Effect on receipt

Upon receipt of this primitive, the ZDO is informed of the receipt of the keying material.

SrcAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device that is the
original source of the transported key.

KeyType Octet 0x00 – 0x03 Identifies the type of key material that was be trans-
ported. See Table 151.

TransportKeyData Variable Variable

The key that was transported along with identifica-
tion and usage parameters. The type of this parame-
ter depends on the KeyType parameter as follows:

KeyType = 0x00 see Table 156.

KeyType = 0x01 see Table 157.

KeyType = 0x02 see Table 154.

KeyType = 0x03 see Table 154.

Table 156 TransportKeyData parameter for a trust-center master key
Parameter Name Type Valid Range Description

TrustCenter-Master-
Key

Set of 16
octets Variable The trust center master key.

Table 157 TransportKeyData parameter for a Network key
Parameter Name Type Valid Range Description

KeySeqNumber Octet 0x00-0xFF

A sequence number assigned to a Network key by
the trust center and used to distinguish Network
keys for purposes of key updates, and incoming
frame security operations.

NetworkKey Set of 16
octets Variable The Network key.

Table 155 APSME-TRANSPORT-KEY.indication parameters

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 283

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.3.3 Upon Receipt of a Transport-Key Command

Upon receipt of a transport-key command, the APSME shall execute security processing as specified in sub-
clause 3.5.1.2 and then check the key type sub-field.

If the key type field is set to 2 or 3 (i.e., application link or master key), the APSME shall issue the APSME-
TRANSPORT-KEY.indication185 primitive with the SrcAddress parameter set to the source of the key-
transport command (as indicated by the NLDE-DATA.indication SrcAddress parameter), the KeyType
parameter set to the key type field. The TransportKeyData parameter shall be set as follows: the Key sub-
parameter shall be set to the key field, PartnerAddress sub-parameter shall be set to the partner address field,
the Initiator parameter shall be set to TRUE if the initiator field is 1, otherwise 0.

If the key type field is set to 0 or 1 (i.e., trust center master key or NWK key186) and the destination address
field is equal to the local address, the APSME shall issue the APSME-TRANSPORT-KEY.indication187

primitive. The SrcAddress parameter set to the source address field of the key-transport command, the
KeyType parameter set to the key type field. The TransportKeyData parameter shall be set as follows: the
Key sub-parameter shall be set to the key field and, in the case of a Network key (i.e., the key type field is set
to 1), the KeySeqNumber sub-parameter shall be set to the sequence number field.

If the key type field is set to 0 or 1 (i.e., trust center master key or NWK key188) and the destination address
field is not equal to the local address, the APSME shall send the command to the address indicated by the
destination address field by issuing the NLDE-DATA.request primitive with security disabled.

Upon receipt of an unsecured transport-key command, the APSME shall check the key type sub-field. If the
key type field is set to 0 (i.e., a trust center master key), the destination address field is equal to the local
address, and the device does not have a trust center master key and address (i.e., the apsTrustCenterAddress
in the AIB), then the APSME shall issue the APSME-TRANSPORT-KEY.indication primitive. Also, if the
key type field is set to 1 (i.e., Network key), the destination address field is equal to the local address, and
the device does not have a Network key, then the APSME shall issue the APSME-TRANSPORT-
KEY.indication primitive. If an APSME-TRANSPORT-KEY.indication primitive is issued, the SrcAddress
parameter shall be set to the source address field of the key-transport command, and the KeyType parameter
shall be set to the key type field. The TransportKeyData parameter shall be set as follows: the Key sub-
parameter shall be set to the key field and, in the case of a Network key (i.e., the key type field is set to 1),
the KeySeqNumber sub-parameter shall be set to the sequence number field.189

3.5.4 Update-Device Services

The APSME provides services that allow a device (e.g., a router) to inform another device (e.g., a trust
center) that a third device has changed its status (e.g., joined or left the network).

3.5.4.1 APSME-UPDATE-DEVICE.request

The ZDO shall issue this primitive when it wants to inform a device (e.g., a trust center) that another device
has a status that needs to be updated (e.g., the device joined or left the network).

185CCB Comment #163
186CCB Comment #162
187CCB Comment #163
188CCB Comment #162
189CCB Comment #161

ZigBee Specification

284 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.4.1.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 158 specifies the parameters for the APSME- UPDATE-DEVICE.request primitive.

3.5.4.1.2 When generated

The ZDO (e.g., on a router or coordinator) shall initiate the APSME-UPDATE-DEVICE.request primitive
when it wants to send updated device information to another device (e.g., the trust center).

3.5.4.1.3 Effect on receipt

Upon receipt of the APSME-UPDATE-DEVICE.request primitive the device shall first create an update-
device command frame (see sub-clause 3.5.9.4). The device address field of this command frame shall be set
to the DeviceAddress parameter and the status field shall be set according to the Status parameter and the
device short address field shall be set to the DeviceShortAddress parameter190. This command frame shall
be security protected as specified in sub-clause 3.5.1.1 and then, if security processing succeeds, sent to the
device specified by the DestAddress parameter by issuing a NLDE-DATA.request primitive.

3.5.4.2 APSME-UPDATE-DEVICE.indication

The APSME shall issue this primitive to inform the ZDO that it received an update-device command frame.

APSME-UPDATE-DEVICE.request {
DestAddress,
DeviceAddress,
Status,
DeviceShortAddress
}

Table 158 APSME-UPDATE-DEVICE.request parameters
Parameter Name Type Valid Range Description

DestAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device that
shall be sent the update information.

DeviceAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device
whose status is being updated.

Status Integer 0x00 – 0x08

Indicates the updated status of the device
given by the DeviceAddress parameter.

0x00: device secured join.

0x01: device unsecured join.

0x02: device left.

0x03-0x08 reserved.

DeviceShortAddress Network
address 0x0000 - 0xffff The 16-bit network address of the device

whose status is being updated.a

aCCB Comment

190CCB Comment #142

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 285

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.4.2.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 159 specifies the parameters for the APSME-UPDATE-DEVICE.indication primitive.

3.5.4.2.2 When generated

The APSME shall generate this primitive when it receives an update-device command frame that is
successfully decrypted and authenticated, as specified in sub-clause 3.5.1.2.

3.5.4.2.3 Effect on receipt

Upon receipt of the APSME-UPDATE-DEVICE.indication primitive the ZDO will be informed that the
device referenced by the DeviceAddress parameter has undergone a status update according to the Status
parameter.

3.5.5 Remove Device Services

The APSME provides services that allow a device (e.g., a trust center) to inform another device (e.g., a
router) that one of its children should be removed from the network.

APSME-UPDATE-DEVICE.indication {
SrcAddress,
DeviceAddress,
Status,
DeviceShortAddress
}

Table 159 APSME-UPDATE-DEVICE.indication parameters
Parameter Name Type Valid Range Description

SrcAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device
originating the update-device command.

DeviceAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device
whose status is being updated.

Status Octet 0x00 – 0xFF

Indicates the updated status of the device
given by the DeviceAddress parameter.

0x00: device secured join.

0x01: device unsecured join.

0x02: device left.

0x03-0xFF reserved.

DeviceShortAddress Network
address 0x0000 - 0xffff The 16-bit network address of the device

whose status is being updated.a

aCCB Comment #142

ZigBee Specification

286 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.5.1 APSME-REMOVE-DEVICE.request

The ZDO of a device (e.g., a trust center) shall issue this primitive when it wants to request that a parent
device (e.g., a router) remove one of its children from the network. For example, a trust center can use this
primitive to remove a child device that fails to authenticate properly.

3.5.5.1.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 160 specifies the parameters for the APSME-REMOVE-DEVICE.request primitive.

3.5.5.1.2 When generated

The ZDO (e.g., on a trust) shall initiate the APSME-REMOVE-DEVICE.request primitive when it wants to
request that a parent device (specified by the ParentAddress parameter) remove one of its child devices (as
specified by the ChildAddress parameter).

3.5.5.1.3 Effect on receipt

Upon receipt of the APSME-REMOVE-DEVICE.request primitive the device shall first create a remove-
device command frame (see sub-clause 3.5.9.4). The child address field of this command frame shall be set
to the ChildAddress parameter. This command frame shall be security protected as specified in sub-clause
3.5.1.1 and then, if security processing succeeds, sent to the device specified by the ParentAddress
parameter by issuing a NLDE-DATA.request primitive.

3.5.5.2 APSME-REMOVE-DEVICE.indication

The APSME shall issue this primitive to inform the ZDO that it received a remove-device command frame.

3.5.5.2.1 Semantics of the service primitive

This primitive shall provide the following interface:

APSME-REMOVE-DEVICE.request {
ParentAddress,
ChildAddress
}

Table 160 APSME- REMOVE-DEVICE.request parameters
Parameter Name Type Valid Range Description

ParentAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device that
is the parent of the child device that is
requested to be removed.

ChildAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the child
device that is requested to be removed.

APSME-REMOVE-DEVICE.indication {
SrcAddress,
ChildAddress
}

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 287

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Table 161 specifies the parameters for the APSME-REMOVE-DEVICE.indication primitive.

3.5.5.2.2 When generated

The APSME shall generate this primitive when it receives a remove-device command frame that is
successfully decrypted and authenticated, as specified in sub-clause 3.5.1.2.

3.5.5.2.3 Effect on receipt

Upon receipt of the APSME-REMOVE-DEVICE.indication primitive the ZDO shall be informed that the
device referenced by the SrcAddress parameter is requesting that the child device referenced by the
ChildAddress parameter be removed from the network.

3.5.6 Request Key Services

The APSME provides services that allow a device to request the current Network key or a master key from
another device (e.g., its trust center).

3.5.6.1 APSME-REQUEST-KEY.request

This primitive allows the ZDO to request either the current Network key or a new end-to-end application
master key.

3.5.6.1.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 162 specifies the parameters for the APSME-REQUEST-KEY.request primitive.

Table 161 APSME-REMOVE-DEVICE.indication parameters
Parameter Name Type Valid Range Description

SrcAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device
requesting that a child device be removed.

ChildAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the child
device that is requested to be removed.

APSME-REQUEST-KEY.request {
DestAddress,
KeyType,
PartnerAddress
}

Table 162 APSME-REQUEST-KEY.request parameters
Parameter Name Type Valid Range Description

DestAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device to
which the request-key command should be
sent.

ZigBee Specification

288 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.6.1.2 When generated

The ZDO of a device shall generate the APSME-REQUEST-KEY.request primitive when it requires either
the current Network key or a new end-to-end application master key.

3.5.6.1.3 Effect on receipt

Upon receipt of the APSME-REQUEST-KEY.request primitive the device shall first create a request-key
command frame (see sub-clause 3.5.9.6). The key type field of this command frame shall be set to the same
value as the KeyType parameter. If the KeyType parameter is 0x02 (i.e., an application key), then the partner
address field of this command frame shall be the PartnerAddress parameter. Otherwise, the partner address
field of this command frame shall not be present.

This command frame shall be security protected as specified in sub-clause 3.5.1.1 and then, if security
processing succeeds, sent to the device specified by the DestAddress parameter by issuing a NLDE-
DATA.request primitive.

3.5.6.2 APSME-REQUEST-KEY.indication

The APSME shall issue this primitive to inform the ZDO that it received a request-key command frame.

3.5.6.2.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 163 specifies the parameters for the APSME-REQUEST-KEY.indication primitive.

KeyType Octet 0x00-0xFF

The type of key being requested:
0x01 = Network key
0x02 = Application key
0x00 and 0x03-0xFF = Reserved

PartnerAddress Device
Address

Any valid 64-bit
address

In the case that KeyType parameter indicates
an application key, this parameter shall indi-
cate an extended 64-bit address of a device
that shall receive the same key as the device
requesting the key.

APSME-REQUEST-KEY.indication {
SrcAddress,
KeyType,
PartnerAddress
}

Table 163 APSME-REQUEST-KEY.indication parameters
Parameter Name Type Valid Range Description

SrcAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device that
sent the request-key command.

Table 162 APSME-REQUEST-KEY.request parameters

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 289

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.6.2.2 When generated

The APSME shall generate this primitive when it receives a request-key command frame that is successfully
decrypted and authenticated, as specified in sub-clause 3.5.1.2.

3.5.6.2.3 Effect on receipt

Upon receipt of the APSME-REQUEST-KEY.indication primitive the ZDO shall be informed that the
device referenced by the SrcAddress parameter is requesting a key. The type of key being requested shall be
indicated by the KeyType parameter and if the KeyType parameter is 0x02 (i.e., an application key), the
PartnerAddress parameter shall indicate a partner device that shall receive the same key as the device
requesting the key (i.e., the device indicated by the SrcAddress parameter).

3.5.7 Switch Key Services

The APSME provides services that allow a device (e.g., a trust center) to inform another device that it
should switch to a new active Network key.

3.5.7.1 APSME-SWITCH-KEY.request

This primitive allows a device (e.g., the trust center) to request that another device switch to a new active
Network key.

3.5.7.1.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 164 specifies the parameters for the APSME-SWITCH-KEY.request primitive.

KeyType Octet 0x00-0xFF

The type of key being requested:
0x01 = Network key
0x02 = Application key
0x00 and 0x03-0xFF = Reserved

PartnerAddress Device
Address

Any valid 64-bit
address

In the case that KeyType parameter indicates
an application key, this parameter shall indi-
cate an extended 64-bit address of a device
that shall receive the same key as the device
requesting the key.

APSME-SWITCH-KEY.request {
DestAddress,
KeySeqNumber
}

Table 164 APSME-SWITCH-KEY.request parameters
Parameter Name Type Valid Range Description

DestAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device to
which the switch-key command is sent.

KeySeqNumber Octet 0x00-0xFF
A sequence number assigned to a Network
key by the trust center and used to distinguish
Network keys.

Table 163 APSME-REQUEST-KEY.indication parameters

ZigBee Specification

290 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.7.1.2 When generated

The ZDO of a device (e.g., the trust center) shall generate the APSME-SWITCH-KEY.request primitive
when it wants to inform a device to switch to a new active Network key.

3.5.7.1.3 Effect on receipt

Upon receipt of the APSME-SWITCH-KEY.request primitive the device shall first create a switch-key
command frame (see sub-clause 3.5.9.7). The sequence number field of this command frame shall be set to
the same value as the KeySeqNumber parameter.

This command frame shall be security protected as specified in sub-clause 3.5.1.1 and then, if security
processing succeeds, sent to the device specified by the DestAddress parameter by issuing a NLDE-
DATA.request primitive.

3.5.7.2 APSME-SWITCH-KEY.indication

The APSME shall issue this primitive to inform the ZDO that it received a switch-key command frame.

3.5.7.2.1 Semantics of the service primitive

This primitive shall provide the following interface:

ATable 165 specifies the parameters for the APSME-SWITCH-KEY.indication primitive.

3.5.7.2.2 When generated

The APSME shall generate this primitive when it receives a switch-key command frame that is successfully
decrypted and authenticated, as specified in sub-clause 3.5.1.2.

3.5.7.2.3 Effect on receipt

Upon receipt of the APSME-SWITCH-KEY.indication primitive the ZDO shall be informed that the device
referenced by the SrcAddress parameter is requesting that the Network key referenced by the
KeySeqNumber parameter become the new active Network key.

APSME-SWITCH-KEY.indication {
SrcAddress,
KeySeqNumber
}

Table 165 APSME-SWITCH-KEY.indication parameters
Parameter Name Type Valid Range Description

SrcAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device that
sent the switch-key command.

KeySeqNumber Octet 0x00-0xFF
A sequence number assigned to a Network key
by the trust center and used to distinguish Net-
work keys.

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 291

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.8 Secured APDU Frame

The APS layer frame format from [B7] consists of APS header and APS payload fields. The APS header
consists of frame control and addressing fields. When security is applied to an APDU frame, the security bit
in the APS frame control field shall be set to 1 to indicate the presence of the auxiliary frame header. The
format for the auxiliary frame header is given in sub-clause 3.6.1. The format of a secured APS layer frame
is shown in Table 69. The auxiliary frame header is situated between the APS header and payload fields.

3.5.9 Command Frames

The APS layer command frame formats are given in this clause.

Command identifier values are shown in Table 166)191.

3.5.9.1 Key-Establishment Commands

The APS command frames used during key establishment is specified in this clause. The optional fields of
the APS header portion of the general APS frame format shall not be present.

Figure 69 Secured APS layer frame format
Octets: variable 5 or 6 Variable

Original APS Header
([B7], Clause 7.1)

Auxiliary
frame

header

Encrypted Payload Encrypted Message
Integrity Code (MIC)

Secure frame payload = Output of CCM*

Full APS header Secured APS payload

Table 166 Command identifier values
Command identifier Value

APS_CMD_SKKE_1 0X01

APS_CMD_SKKE_2 0X02

APS_CMD_SKKE_3 0X02

APS_CMD_SKKE_4 0X04

APS_CMD_TRANSPORT_KEY 0X05

APS_CMD_UPDATE_DEVICE 0X06

APS_CMD_REMOVE_DEVICE 0X07

APS_CMD_REQUEST_KEY 0X08

APS_CMD_SWITCH_KEY 0X09

191CCB Comment #205

ZigBee Specification

292 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The generic SKKE command frame shall be formatted as illustrated in Table 70.

3.5.9.1.1 Command identifier field

The command identifier field shall indicate the APS command type. For SKKE frames, the command
identifier shall indicate either an SKKE-1, SKKE-2, SKKE-3, or SKKE-4 frame, depending on the frame
type (see Table 166)192.

3.5.9.1.2 Initiator address field

The initiator address field shall be the 64-bit extended address of the device that acts as the initiator in the
key-establishment protocol.

3.5.9.1.3 Responder address field

The responder address field shall be the 64-bit extended address of the device that acts as the responder in
the key-establishment protocol.

3.5.9.1.4 Data field

The content of the data field depends on the command identifier field (i.e., SKKE-1, SKKE-2, SKKE-3, or
SKKE-4). The following clauses describe the content of the data field for each command type.

3.5.9.1.4.1 SKKE-1 frame

The data field shall be the octet representation of the challenge QEU generated by the initiator during action
step 1. of clause B.7.1.

3.5.9.1.4.2 SKKE-2 frame

The data field shall be the octet representation of the challenge QEV generated by the responder during
action step 2. of clause B.7.2.

3.5.9.1.4.3 SKKE-3 frame

The data field shall be the octet representation of the string MacTag2 generated by the initiator during action
step 11. of clause B.7.1.

3.5.9.1.4.4 SKKE-4 frame

The data field shall be the octet representation of the string MacTag1 generated by the responder during
action step 7. of clause B.7.2.

Figure 70 Generic SKKE frame command format
Octets: 1 1 8 8 16

Frame control Command
identifier

Initiator
Address

Responder
Address Data

APS Header Payload

192Ibid

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 293

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.9.2 Transport-Key Commands

The transport-key command frame shall be formatted as illustrated in Table 71. The optional fields of the
APS header portion of the general APS frame format shall not be present.

3.5.9.3 Command identifier field

This field is 8-bits in length shall be set to indicate that this is a transport-key command frame (see
Table 166)193.

3.5.9.3.1 Key type field

This field is 8-bits in length and describes the type of key being transported. The different types of keys are
enumerated in Table 151.

3.5.9.3.2 Key descriptor field

This field is variable in length and shall contain the actual (unprotected) value of the transported key along
with any relevant identification and usage parameters. The information in this field depends on the type of
key being transported (as indicated by the key type field – see sub-clause 3.5.9.3.1) and shall be set to one of
the formats described in the following subsections.

3.5.9.3.2.1 Trust center master key descriptor field

If the key type field is set to 0, the key descriptor field shall be formatted as shown in Table 72.

The key sub-field shall contain the master key that should be used to set up link keys with the trust center.

The destination address sub-field shall contain the address of the device which should use this master key.

The source address sub-field shall contain the address of the device (e.g., the trust center) which originally
sent this master key.

Figure 71 Transport-key command frame
Octets: 1 1 1 variable

Frame control APS command
identifier Key Type Key descriptor

APS Header Payload

193CCB Comment #205

Figure 72 Trust center master key descriptor field in transport-key command
Octets: 16 8 8

Key Destination address Source address

ZigBee Specification

294 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.9.3.2.2 Network key descriptor field

If the key type field is set to 1, this field shall be formatted as shown in Table 73.

The key sub-field shall contain a Network key.

The sequence number sub-field shall contain the sequence number associated with this Network key.

The destination address sub-field shall contain the address of the device which should use this Network key.

The source address field sub-shall contain the address of the device (e.g., the trust center) which originally
sent this Network key.

3.5.9.3.2.3 Application master and link key descriptor field

If the key type field is set to 2 or 3, this field shall be formatted as shown in Table 74.

The key sub-field shall contain a master or link key that is shared with the device identified in the partner
address field.

The partner address sub-field shall contain the address of the other device that was sent this link or master
key.

The initiator flag sub-field shall be set to 1 if the device receiving this packet requested this key. Otherwise,
this sub-field shall be set to 0.

3.5.9.4 Update-Device Commands

The APS command frame used for device updates is specified in this clause. The optional fields of the APS
header portion of the general APS frame format shall not be present.

The update-device command frame shall be formatted as illustrated in Table 75.

3.5.9.4.1 Command identifier field

The command identifier field shall indicate the APS command type update-device (see Table 166)194.

Figure 73 Network key descriptor field in transport-key command
Octets: 16 1 8 8

Key Sequence number Destination address Source address

Figure 74 Application master key descriptor in transport-key command
Octets: 16 8 1

Key Partner address Initiator flag

Figure 75 Update-device command frame format
Octets: 1 1 8 2 1

Frame control Command identifier Device Address Device short
addressa

aCCB Comment #142

Status

APS Header Payload

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 295

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.9.4.2 Device address field

The device address field shall be the 64-bit extended address of the device whose status is being updated.

3.5.9.4.3 Device short address field

The device short address field shall be the 16-bit network address of the device whose status is being
updated.195

3.5.9.4.4 Status field

The status field shall be assigned a value as described for the Status parameter in Table 149.196

3.5.9.5 Remove Device Commands

The APS command frame used for removing a device is specified in this clause. The optional fields of the
APS header portion of the general APS frame format shall not be present.

The remove-device command frame shall be formatted as illustrated in Table 76.

3.5.9.5.1 Command identifier field

The command identifier field shall indicate the APS command type remove-device (see Table 166)197.

3.5.9.5.2 Child address field

The child address field shall be the 64-bit extended address of the device that is requested to be removed
from the network.

3.5.9.6 Request-Key Commands

The APS command frame used by a device for requesting a key is specified in this clause. The optional
fields of the APS header portion of the general APS frame format shall not be present.

The request-key command frame shall be formatted as illustrated in Figure 77

194CCB Comment #205
195CCB Comment #142
196CCB Comment #140

Figure 76 Remove-device command frame format
Octets: 1 1 8

Frame control Command identifier Child address

APS Header Payload

197CCB Comment #205

Figure 77 Request-key command frame format

Octets: 1 1 1 0/8a

aCCB Comment #143

Frame control Command identifier Key type Partner address

APS Header Payload

ZigBee Specification

296 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.9.6.1 Command identifier field

The command identifier field shall indicate the APS command type request-key (see Table 166)198.

3.5.9.6.2 Key type field

The key type field shall be set to 1 when the Network key is being requested and shall be set to 2 when an
application key is being requested.

3.5.9.6.3 Partner address field

When the key type field is 2 (i.e., an application key), the partner address field shall contain the extended 64-
bit address of the partner device that shall be sent the key. Both the partner device and the device originating
the request-key command will be sent the key.

When the key-type field is 1 (i.e., Network key), the partner address field will not be present.

3.5.9.7 Switch-Key Commands

The APS command frame used by a device for requesting a key is specified in this clause. The optional
fields of the APS header portion of the general APS frame format shall not be present.

The switch-key command frame shall be formatted as illustrated in Table 78.

3.5.9.7.1 Command identifier field

The command identifier field shall indicate the APS command type switch-key (see Table 166)199.

3.5.9.7.2 Sequence number field

The sequence number field shall contain the sequence number identifying the Network key to make active.

3.5.10 Security-Related AIB Attributes

The AIB contains attributes that are required to manage security for the APS layer. Each of these attributes
can be read or written using the APSME-GET.request and APSME-SET.request primitives, respectively.
The security-related attributes contained in the APS PIB are presented in Table 167 and Table 168.

198Ibid

Figure 78 Switch-key command frame format
Octets: 1 1 1

Frame control Command identifier Sequence number

APS Header Payload

199CCB Comment #205

Table 167 AIB security attributes
Attribute Identifier Type Range Description Default

apsDeviceKeyPairSet 0xaaa

Set of Key-
Pair Descrip-
tor entries.

See
Table 168

Variable

A set of key-pair
descriptors containing
master and link key
pairs shared with other
devices.

-

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 297

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.6 Common Security Elements

This clause describes security-related features that are used in more than one ZigBee layer. The NWK and
APS layers shall use the auxiliary header as specified in sub-clause 3.6.1. The MAC, NWK, and APS layers
shall use the security parameters specified in sub-clause 3.6.2. The formatting of all frames and fields in this
specification are depicted in the order in which they are transmitted by the NWK layer, from left to right,
where the leftmost bit is transmitted first in time. Bits within each field are numbered from 0 (leftmost and
least significant) to k-1 (rightmost and most significant), where the length of the field is k bits. Fields that are
longer than a single octet are sent to the next layer in the order from the octet containing the lowest
numbered bits to the octet containing the highest numbered bits.200

apsTrustCenterAddress 0xabb Device
address

Any valid
64-bit

address

Identifies the address
of the device’s trust
center

-

apsSecurityTime-OutPe-
riod 0xacc Integer 0x0000-

0xFFFF

The period of time a
device will wait for an
expected security pro-
tocol frame (in milli-
seconds).

1000

aCCB Comment #150
bIbid
cIbid

Table 168 Elements of the key-pair descriptor
Name Type Range Description Default

DeviceAddress Device
address

Any valid 64-bit
address

Identifies the address of the entity with
which this key-pair is shared.

-

MasterKey Set of 16
octets

- The actual value of the master key. -

LinkKey Set of 16
octets

- The actual value of the link key. -

OutgoingFrame-
Counter

Set of 4
octets

0x00000000-
0xFFFFFFFF

Unique identifier of the key originating
with the device indicated by KeySr-
cAddress.

0x00000000

IncomingFrame-
Counter

Set of 4
octets

0x00000000-
0xFFFFFFFF

Incoming frame counter value corre-
sponding to DeviceAddress.

0x00000000

200CCB Comment #98

Table 167 AIB security attributes

ZigBee Specification

298 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.6.1 Auxiliary Frame Header Format

The auxiliary frame header, as illustrated by Table 79, shall include a security control field and a frame
counter field, and may include a sender address field and key sequence number field.

3.6.1.1 Security Control Field

The security control field shall consist of a security level, a key identifier, and an extended nonce sub-field
and shall be formatted as shown in Table 80.

3.6.1.1.1 Security level sub-field

The security level identifier indicates how an outgoing frame is to be secured, respectively, how an
incoming frame purportedly has been secured: it indicates whether or not the payload is encrypted and to
what extent data authenticity over the frame is provided, as reflected by the length of the message integrity
code (MIC). The bit-length of the MIC may take the values 0, 32, 64 or 128 and determines the probability
that a random guess of the MIC would be correct. The security properties of the security levels are listed in
Table 169.

Figure 79 Auxiliary frame header format
Octets: 1 4 0/8 0/1

Security control Frame Counter Source Address Key Sequence Number

Figure 80 Security control field format
Bit: 0-2 3-4 5 6-7

Security level Key identifier Extended Nonce Reserved

Table 169 Security levels available to the MAC, NWK, and APS layers

Security
level

identifier

Security
Level Sub-

Field
(Table 80)

Security
Attributes

Data
Encryption

Frame Integrity
 (length M of MIC,

in number of
octets)

0x00 ‘000’ None OFF NO (M = 0)

0x01 ‘001’ MIC-32 OFF YES (M=4)

0x02 ‘010’ MIC-64 OFF YES (M=8)

0x03 ‘011’ MIC-128 OFF YES (M=16)

0x04 ‘100’ ENC ON NO (M = 0)

0x05 ‘101’ ENC-MIC-32 ON YES (M=4)

0x06 ‘110’ ENC-MIC-64 ON YES (M=8)

0x07 ‘111’ ENC-MIC-128 ON YES (M=16)

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 299

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.6.1.1.2 Key identifier sub-field

The key identifier sub-field consists of two bits that are used to identify the key used to protect the frame.
The encoding for the key identifier sub-field shall be as listed in Table 170.

3.6.1.1.3 Extended nonce sub-field

The extended nonce sub-field shall be set to 1 if the sender address field of the auxiliary header is present.
Otherwise, it shall be set to 0.

3.6.1.2 Source Address Field

The source address field shall only be present when the extended nonce sub-field of the security control field
is 1. When present, the source address field shall indicate the extended 64-bit address of the device
responsible for securing the frame.

3.6.1.3 Counter Field

The counter field is used to provide for frame freshness and to prevent processing of duplicate frames.

3.6.1.4 Key Sequence Number Field

The key sequence number field shall only be present when the key identifier sub-field of the security control
field is 1 (i.e., the Network key). When present, the key sequence number field shall indicate the key
sequence number of the Network key used to secure the frame.

3.6.2 Security Parameters

This clause specifies the parameters used for the CCM* security operations.

3.6.2.1 CCM* Mode of Operation and Parameters

Applying security to a MAC, NWK, or APS frame on a particular security level corresponds to a particular
instantiation of the AES-CCM* mode of operation as specified in section B.1.2. The AES-CCM* mode of
operation is an extension of the AES-CCM mode that is used in the 802.15.4-2003 MAC specification and
provides capabilities for authentication, encryption, or both.

The nonce shall be formatted as specified in sub-clause 3.6.2.2.

Table 169 gives the relationship between the security level subfield of the security control field (Table 80),
the security level identifier, and the CCM* encryption/authentication properties used for these operations.

Table 170 Encoding for the key identifier sub-field

Key Identifier
Key Identifier Sub-Field

(Table 80)
Description

0x00 ‘00’ A link key.

0x01 ‘01’ A Network key.

0x02 ‘10’ A key-transport key.

0x03 ‘11’ A key-load key.

ZigBee Specification

300 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.6.2.2 CCM* Nonce

The nonce input used for the CCM* encryption and authentication transformation and for the CCM*
decryption and authentication checking transformation consists of data explicitly included in the frame and
data that both devices can independently obtain. Figure 81 specifies the order and length of the subfields of
the CCM* nonce. The nonce's security control and frame counter fields shall be the same as the auxiliary
header’s security control and frame counter fields (as defined in sub-clause 3.6.1) of the frame being
processed. The nonce’s source address field shall be set to the extended 64-bit MAC address of the device
originating security protection of the frame. When the extended nonce sub-field of the auxiliary header’s
security control field is 1, the extended 64-bit MAC address of the device originating security protection of
the frame shall correspond to the auxiliary header’s source address field (as defined in sub-clause 3.6.1) of
the frame being processed.

3.6.3 Cryptographic Key Hierarchy

The link key established between two (or more) devices via one of the key-establishment schemes specified
in sub-clause 3.5.2 (or transport-key commands specified in sub-clause 3.5.3) is used to determine related
secret keys, including data keys, key-transport keys, and key-load keys. These keys are determined as
follows:

1. Key-Transport Key. This key is the outcome of executing the specialized keyed hash function specified
in clause B.1.5 under the link key with as input string the 1-octet string ‘0x00’.

2. Key-Load Key. This key is the outcome of executing the specialized keyed hash function specified in
clause B.1.5 under the link key with as input string the 1-octet string ‘0x02’.

3. Data Key. This key is equal to the link key.

All keys derived from the link key shall share the associated frame counters. Also, all layers of ZigBee shall
share the Network key and associated outgoing and incoming frame counters.

3.6.4 Implementation Guidelines (Informative)

This clause provides general guidelines that should be followed to ensure a secure implementation.

3.6.4.1 Random Number Generator

A ZigBee device implementing the key-establishment (i.e., see sub-clause 3.2.4.1) security service may
need a strong method of random number generation. For example, when link keys are pre-installed (e.g., in
the factory), a random number may not be needed.

In all cases that require random numbers, it is critical that the random numbers are not predictable or have
enough entropy, so an attacker will not be able determine them by exhaustive search. The general
recommendation is that the random number generation shall meet the random number tests specified in
FIPS140-2 [B12]. There are methods for generation of random numbers:

1. Base the random number on random clocks and counters within the ZigBee hardware

2. Base the random number on random external events

3. Seed each ZigBee device with a good random number from an external source during production. This
random number can then used as a seed to generate additional random numbers.

Figure 81 CCM* nonce
Octets: 8 4 1

Source address Frame counter Security control

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 301

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

A combination of these methods can be used. Since the random number generation is likely integrated into
the ZigBee IC, its design and hence the ultimate viability of any encryption/security scheme is left up to the
IC manufacturers.

3.6.4.2 Security Implementation

It is very important security be well implemented and tested so that no “bugs” exist that an attacker can use
to his advantage. It is also desirable that the security implementation does not need to be re-certified for
every application. Security services should be implemented and tested by security experts and should not be
re-implemented or modified for different applications.

3.6.4.3 Conformance

Conformance shall be defined by the profile inheriting from this specification. Correct implementation of
selected cryptographic protocols should be verified as part of the ZigBee certification process. This
verification shall include known value tests: an implementation must show that given particular parameters,
it will correctly compute the corresponding results.

3.7 Functional Description

This subclause provides detailed descriptions of how the security services shall be used in a ZigBee
network. A description of the ZigBee coordinator’s security initialization responsibilities is given in sub-
clause 3.7.1. A brief description of the trust center application is given in sub-clause 3.7.2. Detailed security
procedures are given in sub-clause 3.7.3.

3.7.1 ZigBee Coordinator

The coordinator shall configure the security level of the network by setting the NwkSecurityLevel attribute in
the NWK layer PIB table. If the NwkSecurityLevel attribute is set to zero, the network will be unsecured,
otherwise it will be secured.

The coordinator shall configure the address of the trust center by setting the AIB attribute
apsTrustCenterAddress. The default value of this address is the coordinator’s address itself, otherwise, the
coordinator may designate an alternate trust center.

3.7.2 Trust Center Application

The trust center application runs on a device trusted by devices within a ZigBee network to distribute keys
for the purpose of network and end-to-end application configuration management. The trust center shall be
configured to operate in either commercial or residential mode and may be used to help establish end-to-end
application keys either by sending out link keys directly (i.e., key-escrow capability) or by sending out
master keys.

3.7.2.1 Commercial Mode

The commercial mode of the trust center is designed for high-security commercial applications. In this
mode, the trust center shall maintain a list of devices, master keys, link keys, and Network keys that it needs
to control and enforce the policies of Network key updates and network admittance. In this mode, the
memory required for the trust center grows with the number of devices in the network and the nwkAllFresh
attribute in the NIB shall be set to TRUE.

ZigBee Specification

302 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.7.2.2 Residential Mode

The residential mode of the trust center is designed for low-security residential applications. In this mode,
the trust center may maintain a list of devices, master keys, or link keys with all the devices in the network;
however, it shall maintain the Network key and controls policies of network admittance. In this mode, the
memory required for the trust center does not grow with the number of devices in the network and the
nwkAllFresh attribute in the NIB shall be set to FALSE.

3.7.3 Security Procedures

This subclause gives message sequence charts for joining a secured network, authenticating a newly joined
device, updating the Network key, recovering the Network key, establishing end-to-end application keys,
and leaving a secured network.

3.7.3.1 Joining a Secured Network

Figure 82 shows an example message sequence chart ensuing from when a joiner device communicates with
a router device to join a secured network.

Figure 82 Example of joining a secured network

Router Joiner

MAC NWK ZDO MAC NWK ZDO

NLME-PERMIT-JOINING.request

MLME-SET.request(macAssociationPermit = TRUE)

NLME-NETWORK-DISCOVERY.request

MLME-SCAN.request

Beacon request command (unsecured)

Beacon (unsecured)
MLME-SCAN.confirm

NLME-NETWORK-DISCOVERY.confirm

NLME-JOIN.request

MLME-ASSOCIATE.request

Association request command

NLME-JOIN.indication

MLME-ASSOCIATE.indication

MLME-ASSOCIATE.response

Association response command

MLME-ASSOCIATE.confirm

NLME-JOIN.confirm

MLME-START.request (only if B is a router)

Joined (unauthenticated)

NLME-START-ROUTER.request (only if B is a router)

Successful Authenticate Routine (see 8.3.2)

Joined (authenticated)

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 303

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The joiner device may begin the join procedure by issuing an NLME-NETWORK-DISCOVERY.request
primitive. This primitive will invoke an MLME-SCAN.request primitive which may cause the transmission
of an unsecured beacon request frame (depending on whether the scan is an active or passive scan).

The joiner device receives beacons from nearby routers and the NWK layer will issue an NLME-
NETWORK-DISCOVERY.confirm primitive. The NetworkList parameter of this primitive will indicate all
of the nearby PANs along with their nwkSecurityLevel and nwkSecureAllFrames nwkSecureAllFrames
attributes. In Figure 82, the shown router device has already been placed in a state such that its beacons have
the “association permit” sub-field set to “1” (permit association).

The joiner device shall decide which PAN to join (e.g., based on the security attributes received in NLME-
NETWORK-DISCOVERY.confirm primitive) and shall issue the NLME-JOIN.request primitive to join
that PAN. If the joiner already has a Network key for this PAN, the SecurityEnable parameter for the
NLME-JOIN.request primitive shall be set to TRUE; otherwise it shall be set to FALSE. As shown in
Figure 82, the NLME-JOIN.request primitive causes an association request command to be sent to the
router.

Upon receipt of the association request command, the router shall issue an MLME-ASSOCIATE.indication
primitive with the SecurityUse parameter set to TRUE or FALSE, according to whether the association
request command was secured or not. Next, the NWK layer will issue an NLME-JOIN.indication primitive
to the router’s ZDO. The router shall now know the joiner device’s address and whether the Network key
was used to secure the association request command. The router will also issue an MLME-
ASSOCIATE.response primitive with the SecurityEnable parameter set to TRUE or FALSE, according to
whether the association request command was secured or not, respectively. This primitive will cause an
association response command to be sent to the joiner.

Upon receipt of the association response command, the joiner shall issue the NLME-JOIN.confirm primitive
The joiner is now declared “joined, but unauthenticated” to the network. The authentication routine (see sub-
clause 3.7.3.2) shall follow.

If the joiner is not a router, it is declared “joined and authenticated” immediately following the successful
completion of the authentication routine.

If the joiner is a router, it is declared “joined and authenticated” only after the successful completion of the
authentication routine followed by the initiation of routing operations. Routing operations shall be initiated
by the joiner’s ZDO issuing the NLME-START.request201 primitive to cause the MLME-START.request
primitive to be sent to the MAC layer of the joiner.

If the router refuses the joiner, its association response frame shall contain the association status field set to
a value other than “0x00”, and, after this parameter reaches the ZDO of the joiner in the NLME-
JOIN.confirm primitive, the joiner shall not begin the authentication routine.

3.7.3.2 Authentication

Once a device joins a secured network and is declared “joined but unauthenticated”, it must be authenticated
as specified in this sub-clause.

3.7.3.2.1 Router operation

If the router is not the trust center, it shall begin the authentication procedure immediately after receipt of the
NLME-JOIN.indication202 primitive by issuing an APSME-UPDATE-DEVICE.request primitive with the
DestAddress parameter set to the apsTrustCenterAddress in the AIB and the DeviceAddress parameter set to
the address of the newly joined device. The Status parameter of this primitive shall be set to 0x00 (i.e.,

201CCB Comment #216
202CCB Comment #217

ZigBee Specification

304 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

secured join) if the newly joined device secured the associate request command. Otherwise, the Status
parameter shall be set to 0x01 (i.e., unsecured join).

If the router is the trust center, it shall begin the authentication procedure by simply operating as a trust
center.

3.7.3.2.2 Trust center operation

The trust center role in the authentication procedure shall be activated upon receipt of an incoming update-
device command or immediately after receipt of the NLME-JOIN.indication203 primitive (in the case where
the router is the trust center). The trust center behaves differently depending on at least five factors:

— Whether the trust center decides to allow the new device to join the network (e.g., the trust center is
in a mode that allows new devices to join).

— Whether the trust center is operating in residential or commercial mode (see sub-clause 3.7.2.1 and
sub-clause 3.7.2.2, respectively).

— If in residential mode, whether the device is joining unsecured or secured (i.e., as indicated by the
Status sub-field of the update-device command).

— If in commercial mode, whether the trust center has a master key corresponding to the newly joined
device.

— The nwkSecureAllFrames parameter of the NIB.

If, at any time during the authentication procedure, the trust center decides not to allow the new device to
join the network (e.g., a policy decision or a failed key-establishment protocol), it shall take actions to
remove the device from the network. If the trust center is not the router of the newly joined device, it shall
remove the device from the network by issuing the APSME-REMOVE-DEVICE.request primitive with the
ParentAddress parameter set to the address of the router originating the update-device command and the
ChildAddress parameter set to the address of the joined (but unauthenticated) device. If the trust center is the
router of the newly joined device, it shall remove the device from the network by issuing the NLME-
LEAVE.request primitive with the DeviceAddress parameter set to the address of the joined (but
unauthenticated) device.

3.7.3.2.2.1 Residential mode

After being activated for the authentication procedure the trust center shall send the device the active
Network key by issuing the APSME-TRANSPORT-KEY.request primitive with the DestAddress parameter
set to the address of the newly joined device, and the KeyType parameter to 0x01 (i.e., Network key).

If the joining device already has the Network key (i.e., the Status sub-field of the update-device command is
0x00), the TransportKeyData sub-parameters shall be set as follows: the KeySeqNumber sub-parameter
shall be set to 0, the NetworkKey sub-parameter shall be set to all zeros, and the UseParent sub-parameter
shall be set to FALSE.

Otherwise, the KeySeqNumber sub-parameter shall be set to the sequence count value for this Network key,
the NetworkKey sub-parameter shall be set to Network key. The UseParent sub-parameter shall be set to
FALSE if the trust center is the router; otherwise, the UseParent sub-parameter shall be set to TRUE and the
ParentAddress sub-parameter shall be set to the address of the router originating the update-device
command.

In the case of a joining device that is not preconfigured with a Network key, the issuance of this transport-
key primitive will cause the Network key to be sent unsecured from the router to the newly joined device—

203CCB Comment #218

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 305

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

security is assumed to be present here via non-cryptographic means, such as only sending this key once, at
low power, immediately after external input to both router and joiner, etc.

3.7.3.2.2.2 Commercial mode

After being activated for the authentication procedure, the trust center operation in commercial mode
depends on if the device joining the network is preconfigured with a trust center master key.

If the trust center does not already share a master key with the newly joined device, it shall send the device a
master key by issuing the APSME-TRANSPORT-KEY.request primitive with the DestAddress parameter
set to the address of the newly joined device, and the KeyType parameter to 0x00 (i.e., trust center master
key). The TransportKeyData sub-parameters shall be set as follows: the TrustCenterMasterKey sub-
parameter shall be set to trust center master key, and the ParentAddress sub-parameter shall set to the
address of the local device if the trust center is the router; otherwise, the ParentAddress sub-parameter shall
set to the address of the router originating the update-device command. The issuance of this primitive will
cause the master key to be sent unsecured from the router to the newly joined device—security is assumed to
be present here via non-cryptographic means, such as only sending this key once, at low power, immediately
after external input to both router and joiner, etc.

The trust center shall initiate the establishment of a link key by issuing the APSME-ESTABLISH-
KEY.request primitive with the ResponderAddress parameter set to the address of the newly joined device
and the KeyEstablishmentMethod set to 0x00 (i.e., SKKE). Additionally, if the nwkSecureAllFrames
parameter of the NIB is FALSE or the trust center is the router, the UseParent parameter shall be set to
FALSE; otherwise, the UseParent parameter shall be set to TRUE and the ResponderParentAddress
parameter shall be set to the address of the router originating the update-device command.

Upon receipt of the corresponding APSME-ESTABLISH-KEY.confirm primitive with Status equal to 0x00
(i.e., success), the trust center shall send the new device the Network key by issuing the APSME-
TRANSPORT-KEY.request primitive with the DestAddress parameter set to the address of the newly joined
device, and the KeyType parameter to 0x01 (i.e., Network key). The TransportKeyData sub-parameters shall
be set as follows. The KeySeqNumber sub-parameter shall be set to the sequence count value for this
Network key, the NetworkKey sub-parameter shall be set to Network key, and the UseParent sub-parameter
shall be set to FALSE.

3.7.3.2.3 Joining device operation

After successfully associating to a secured network, the joining device shall participate in the authentication
procedure described in this sub-clause. Following a successful authentication procedure, the joining device
shall set the nwkSecurityLevel and nwkSecureAllFrames attributes in the NIB to the values indicated in the
beacon from the router.

A joined and authenticated device in a secured network with nwkSecureAllFrames equal to TRUE shall
always apply NWK layer security to outgoing (incoming) frames unless the frame is destined for (originated
from) a newly joined but unauthenticated child. No such restrictions exist if nwkSecureAllFrames is equal to
FALSE.

The joining device’s participation in the authentication procedure depends on the state of the device. There
are three possible initial states to consider:

— Preconfigured with a Network key (i.e., residential mode)

— Preconfigured with a trust center master key and address (i.e., commercial mode)

— Not preconfigured (i.e., undetermined mode – either residential or commercial mode)

In a secured network, if the device does not become authenticated within a preconfigured amount of time, it
shall leave the network.

ZigBee Specification

306 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.7.3.2.3.1 Preconfigured Network key

If the joining device was preconfigured with just a Network key (and the association was successful), it shall
set the outgoing frame counter for this key to zero, and empty the incoming frame counter set for this key,
and wait to receive a dummy (all zero) Network key from the trust center. Upon receipt of the APSME-
TRANSPORT-KEY.indication primitive with the KeyType parameter set to 0x01 (i.e., the Network key),
the joining device shall set the apsTrustCenterAddress attribute in its AIB to the SrcAddress parameter of
the APSME-TRANSPORT-KEY.indication primitive. The joining device is now considered authenticated
and shall enter the normal operating state for residential mode.

3.7.3.2.3.2 Preconfigured trust center key

If the joining device is preconfigured with a trust center master key and address (i.e., the
apsTrustCenterAddress attribute in the AIB) it shall wait to establish a link key and receive a Network key
from the trust center. Therefore, upon receipt of the APSME-ESTABLISH-KEY.indication primitive with
the InitiatorAddress parameter set to the trust center’s address and the KeyEstablishmentMethod parameter
set to SKKE, the joining device shall respond with the APSME-ESTABLISH-KEY.response primitive with
the InitiatorAddress parameter set to the trust center’s address and the Accept parameter set to TRUE. After
receipt of the APSME-ESTABLISH-KEY.confirm primitive with the Address parameter set to the trust
center’s address and the Status parameter set to 0x00 (i.e., success), the joining device shall expect to receive
the Network key. Upon receipt of the APSME-TRANSPORT-KEY.indication primitive with
SourceAddress parameter set to the trust center’s address, the KeyType parameter set to 0x01 (i.e., the
Network key), the joining device shall use the data in the TransportKeyData parameter for configuring the
Network key. The joining device is now considered authenticated and shall enter the normal operating state
for commercial mode.

3.7.3.2.3.3 Not preconfigured

If the joining device is not preconfigured with a Network key nor a trust center master key and address (i.e.,
the apsTrustCenterAddress attribute in the AIB) it shall wait to receive either an unsecured trust center
master key or a Network key. Implementers should note that transmission of an unsecured key represents a
security risk and that if security is a concern, keys should be preconfigured – preferable via an out-of-band
mechanism.

Upon receipt of the APSME-TRANSPORT-KEY.indication primitive with the KeyType parameter set to
0x01 (i.e., the Network key), the joining device shall make the data in the TransportKeyData parameter its
active Network key and shall set the apsTrustCenterAddress attribute in its AIB to the SrcAddress parameter
of the APSME-TRANSPORT-KEY.indication primitive. The joining device is now considered
authenticated and shall enter the normal operating state for residential mode.

Upon receipt of the APSME-TRANSPORT-KEY.indication primitive with the KeyType parameter set to
0x00 (i.e., the trust center master key), the joining device shall make its trust center master key the data in
the TransportKeyData parameter and the apsTrustCenterAddress attribute in its AIB the SrcAddress
parameter. Next, upon receipt of the APSME-ESTABLISH-KEY.indication primitive with the
InitiatorAddress parameter set to the trust center’s address and the KeyEstablishmentMethod parameter set
to SKKE, the joining device shall respond with the APSME-ESTABLISH-KEY.response primitive with the
InitiatorAddress parameter set to the trust center’s address and the Accept parameter set to TRUE. After
receipt of the APSME-ESTABLISH-KEY.confirm primitive with the Address parameter set to the trust
center’s address and the Status parameter set to 0x00 (i.e., success), the joining device shall expect to receive
the Network key. Upon receipt of the APSME-TRANSPORT-KEY.indication primitive with
SourceAddress parameter set to the trust center’s address, the KeyType parameter set to 0x01 (i.e., the
Network key), the joining device shall use the data in the TransportKeyData parameter for configuring the
Network key. The joining device is now considered authenticated and shall enter the normal operating state
for commercial mode.

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 307

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.7.3.2.4 Message sequence charts

Figure 83 and Figure 84 give example message sequence charts for the authentication procedure when the
router and trust center are separate devices operating in residential or commercial mode, respectively.

In Figure 83, the update-device and transport-key commands communicated between the trust center and the
router shall be secured at the APS layer based on the Network key and, if the nwkSecureAllFrames NIB
attribute is TRUE, also secured at the NWK layer with the Network key. The transport-key command sent
from the router to joiner shall not be secured.

Figure 83 Example residential-mode authentication procedure

In Figure 84, the update-device and transport-key commands communicated between the trust center and the
router shall be secured at the APS layer based on the trust center link key and, if the nwkSecureAllFrames
NIB attribute is TRUE, also secured at the NWK layer with the Network key. The transport-key command
sent from the router to joiner shall not be secured. The SKKE commands shall be sent using the router as a
liaison when the nwkSecureAllFrames NIB attribute is TRUE, such that SKKE commands between the trust
center and router shall be secured at the NWK layer with the Network key and commands between the router
and joiner shall not be secured. Otherwise, the SKKE commands shall be unsecured between the trust center
and joiner. The final transport-key communicated between the trust center and the joiner shall be secured at
the APS layer based on the trust center link key and, if the nwkSecureAllFrames NIB attribute is TRUE, also
secured at the NWK layer with the Network key.

Joiner Router Trust Center

Update-Device Command

Joined (unauthenticated)

Joined (authenticated)

Secured Transport-Key Command(NWK key)
1

Unsecured Transport-Key Command(NWK key)
1

Note:

1. The trust center sends a dummy all-zero NWK key if the joiner securely joined using a preconfigured network key.

Decision to accept

new device

ZigBee Specification

308 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 84 Example commercial-mode authentication procedure

3.7.3.3 Network Key Update

The trust center and network device shall follow the procedures described in this sub-clause when updating
the Network key.

3.7.3.3.1 Trust center operation

When operating in residential mode, the trust center shall never update the network. This is a tradeoff to
limit implementation complexity, at the cost of reduced security.

When operating in commercial mode, the trust center shall maintain a list of all devices in the network. To
update the Network key, the trust center shall first send the new Network key to each device on this list and
then ask each device to switch to this new key. The new Network key shall be sent to a device on the list by
issuing the APSME-TRANSPORT-KEY.request primitive with the DestAddress parameter set to the
address of the device on the list and the KeyType parameter set to 0x01 (i.e., Network key). The
TransportKeyData sub-parameters shall be set as follows. The KeySeqNumber sub-parameter shall be set to
the sequence count value for this Network key, the NetworkKey sub-parameter shall be set to the Network
key, and the UseParent sub-parameter shall be set to FALSE. If the sequence count for the previously
distributed Network key is represented as N, then the sequence count for this new Network key shall be
(N+1) mod 256. The trust center shall ask a device to switch to this new key by issuing the APSME-
SWITCH-KEY.request primitive with the DestAddress parameter set to the address of the device on the list
and the KeySeqNumber parameter set to the sequence count value for the updated Network key.

3.7.3.3.2 Network device operation

When in normal operating state for residential mode (i.e., a trust center master key is not present), a device
shall not accept an updated Network key. Thus, in this mode, transport-key or a switch-key commands with
the KeyType parameter set to 0x01 (i.e., Network key) shall be ignored.

Joiner Router Trust Center

Update-Device Command

Joined (unauthenticated)

Joined (authenticated)

Secured Transport-Key Command (Master key)
1

Unsecured Transport-Key Command (Master key)
1

Secured Transport-Key Command(NWK key)

SKKE-1 Command

SKKE-2 Command

SKKE-3 Command

SKKE-4 Command

See

Note 2

Notes:
1. The trust center does not send a master key if it already shares one with the joiner device (i.e., the pre-configured situation)

2. SKKE commands shall be sent using the router as a liaison when the nwkSecureAllFrame NIB attribute is TRUE (i.e., these

commands will be secured between the trust center and router at the NWK layer, but not between the router and joiner).

Decision to accept

new device

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 309

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

When in the normal operating state for commercial mode (i.e., a trust center master key is present) and upon
receipt of a APSME-TRANSPORT-KEY.indication primitive with the KeyType parameter set to 0x01 (i.e.,
Network key), a device shall accept the TransportKeyData parameters as a Network key only if the
SrcAddress parameter is the same as the trust center’s address (as maintained in the apsTrustCenterAddress
attribute of the AIB). If accepted and if the device is capable of storing an alternate Network key, the key
and sequence number data contained in the TransportKeyData parameter shall replace the alternate Network
key. Otherwise, the key and sequence number data contained in the TransportKeyData parameter shall
replace the active Network key.

When in the normal operating state for commercial mode (i.e., a trust center master key is present) and upon
receipt of a APSME-SWITCH-KEY.indication primitive, a device shall switch its active Network key to the
one designated by the KeySeqNumber parameter only if the SrcAddress parameter is the same as the trust
center’s address (as maintained in the apsTrustCenterAddress attribute of the AIB).

3.7.3.3.3 Message sequence chart

An example of a successful Network key-update procedure for two devices is shown in Figure 85. In this
example, the trust center sends the Network key with sequence number N to devices 1 and 2. In this
example, device 1 is an FD capable of storing two Network keys, an active and alternate, and device 2 is an
RFD that can store only a single Network key. Upon receipt of the transport-key command, device 1
replaces its alternate Network key with the new Network key; however device 2 must replace its active
Network key with the new key. Next, upon receipt of the switch-key command, device 1 makes the new
Network key the active Network key; however device 2 has just one active Network key, so it ignores this
command.

Figure 85 Example Network key-update procedure

3.7.3.4 Network Key Recovery

A network device and trust center shall follow the procedures described in this sub-clause when recovering
the Network key.

3.7.3.4.1 Network device operation

When in the normal operating state for residential mode (i.e., a trust center master key is not present), a
device shall not generate a request for an updated Network key.

When in the normal operating state for commercial mode (i.e., a trust center master key is present) a network
device shall request the current Network key by issuing the APSME-REQUEST-KEY.request primitive

Device 2 Device 1 Trust Center

Transport-Key Command(NWK key, N)

Replace alternate network

key with network key N.

Transport-Key Command(NWK key, N)

Switch-Key Command(N)

Switch-Key Command(N)

Replace active network

key with network key N.

Make network key N the

active network key.

Ignore command.

ZigBee Specification

310 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

with the DestAddress parameter204 set to the trust center’s address (as maintained in the
apsTrustCenterAddress attribute of the AIB), the KeyType parameter set to 0x01 (i.e., Network key), and the
PartnerAddress parameter set to 0.

3.7.3.4.2 Trust Center operation

When operating in residential mode, the trust center shall ignore the receipt of APSME-REQUEST-
KEY.indication primitives with the KeyType parameter set to 0x01205 (i.e., Network key).

When operating in commercial mode and receipt of APSME-REQUEST-KEY.indication primitives with the
KeyType parameter set to 0x01 (i.e., Network key), the trust center shall determine whether the device
indicated by the SrcAddress parameter is present on its list of all device on the network. If the device is
present on this list, the trust center shall issue the APSME-TRANSPORT-KEY.request primitive with the
DestAddress parameter set to the address of the device requesting the key and the KeyType parameter set to
0x01 (i.e., Network key). The TransportKeyData sub-parameters shall be set as follows. The
KeySeqNumber sub-parameter shall be set to the sequence count value for this Network key, the
NetworkKey sub-parameter shall be set to the Network key, and the UseParent sub-parameter shall be set to
FALSE. Next, the trust center shall ask a device to switch to this new key by issuing the APSME-SWITCH-
KEY.request primitive with the DestAddress parameter set to the address of the device that requested the
key and the KeySeqNumber parameter set to the sequence count value for the updated Network key.

3.7.3.4.3 Message sequence chart

An example of a successful Network key-recovery procedure is shown in Figure 86. In this example, the
network device requests the current Network key from the trust center. The trust center responds with
current key and then tells the device to switch to this key.

Figure 86 Example Network key-recovery procedure

3.7.3.5 End-to-End Application Key Establishment

An initiator device, a trust center, and a responder device shall follow the procedures described in this sub-
clause when establishing a link key for purposes of end-to-end application security between initiator and
responder devices.

3.7.3.5.1 Device operation

The initiator device shall begin the procedure to establish a link key with a responder device by issuing the
APSME-REQUEST-KEY.request primitive. The DstDevice parameter shall be set to the address of its trust

204CCB Comment #219
205CCB Comment #220

Device A Trust Center

Request-Key Command(NWK key)

Switch-Key Command(N)

Replace alternate network

key with network key N.

Make network key N the

active network key.

Make sure device A is

part of the network.
Transport-Key Command(NWK key, N)

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 311

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

center, the KeyType parameter shall be set to 0x02 (i.e., application key), and the PartnerAddress parameter
shall be set to the address of the responder device.

3.7.3.5.1.1 Upon receipt of link key

Upon receipt of an APSME-TRANSPORT-KEY.indication primitive with the KeyType parameter set to
0x03 (i.e., application link key), a device may accept the TransportKeyData parameters as a link key with
the device indicated by the PartnerAddress parameter only if the SrcAddress parameter is the same as the
apsTrustCenterAddress attribute of the AIB. If accepted, the DeviceKeyPairSet attribute in AIB table will be
updated. A key-pair descriptor in the AIB shall be created (or updated if already present), for the device
indicated by the PartnerAddress parameter, by setting the DeviceAddress element to the PartnerAddress
parameter, the LinkKey element to the link key from the TransportKeyData parameter, and the
OutgoingFrameCounter and IncomingFrameCounter elements to 0.

3.7.3.5.1.2 Upon receipt of a master key

Upon receipt of an APSME-TRANSPORT-KEY.indication primitive with the KeyType parameter set to
0x02 (i.e., application master key), a device may accept the TransportKeyData parameters as a master key
with the device indicated by the PartnerAddress sub-parameter only if the SrcAddress parameter is the same
as the apsTrustCenterAddress attribute of the AIB. If accepted, the DeviceKeyPairSet attribute in AIB table
will be updated. A key-pair descriptor shall be created (or updated if already present), for the device
indicated by the PartnerAddress parameter, by setting the DeviceAddress element to the PartnerAddress
parameter, the MasterKey element to the master key from the TransportKeyData parameter, and the
OutgoingFrameCounter and IncomingFrameCounter elements to 0.

Next, if the Initiator sub-parameter of the TransportKeyData parameter of the APSME-TRANSPORT-
KEY.indication primitive was TRUE, the device shall issue the APSME-ESTABLISH-KEY.request
primitive. The ResponderAddress206 parameter shall be set to the PartnerAddress sub-parameter of the
TransportKeyData parameter, the UseParent parameter shall be set to FALSE, and the
KeyEstablishmentMethod shall be set to 0x00 (i.e., SKKE).

Upon receipt of the APSME-ESTABLISH-KEY.indication primitive, the responder device shall be
informed that the initiator device wishes to establish a link key. If the responder decides to establish a link
key, it shall issue the APSME-ESTABLISH-KEY.response207 primitive with the InitiatorAddress
parameter set to the address of the initiator and the Accept parameter set to TRUE. Otherwise, it shall set the
Accept parameter set to FALSE.

If the responder decided to set up a key with the initiator, the SKKE protocol will ensue and the APSME-
ESTABLISH-KEY.confirm primitive will be issued to both the responder and initiator.

3.7.3.5.2 Trust center operation

Upon receipt of APSME-REQUEST-KEY.indication primitives with the KeyType parameter set to 0x02
(i.e., application key), the trust center behavior depends on if it has been configured to send out application
link keys or master keys.

The trust center shall issue two APSME-TRANSPORT-KEY.request primitives. If configured to send out
application link keys the KeyType parameter shall be set to 0x03 (i.e., application link key); otherwise, the
KeyType parameter shall be set to 0x02 (i.e., application master key). The first primitive shall have the
DestAddress parameter set to the address of the device requesting the key. The TransportKeyData sub-
parameters shall be set as follows: the PartnerAddress sub-parameter shall be set to the PartnerAddress sub-
parameter of the APSME-REQUEST-KEY.indication primitive’s TransportKeyData parameter, the

206CCB Comment #221
207CCB Comment #222

Initiator sub-parameter shall be set to TRUE, and the Key sub-parameter shall be set to a new key K (a
master or link key). The second primitive shall have the DestAddress parameter set to the PartnerAddress
sub-parameter of the APSME-REQUEST-KEY.indication primitive’s TransportKeyData parameter. The
TransportKeyData sub-parameters shall be set as follows: the PartnerAddress sub-parameter shall be set to
the address of the device requesting the key, the Initiator sub-parameter shall be set to FALSE, and the Key
sub-parameter shall be set to K.

3.7.3.5.3 Message sequence chart

An example message sequence chart of the end-to-end application key establishment procedure is shown in
Figure 87. The procedure begins with the transmission of the request-key command from the initiator to the
trust center. Next, the trust center starts a time-out timer. For the duration of this timer (i.e., until it expires),
the trust center shall discard any new request-key commands for this pair of devices unless they are from the
initiator.

The trust center shall now send transport-key commands containing the application link or master key to the
initiator and responder devices. Only the initiator’s transport-key command will have the Initiator field set
to 1 (i.e., TRUE), so if a master key was sent, only the initiator device will begin the key-establishment
protocol by sending the SKKE-1 command. If the responder decides to accept establishing a key with the
initiator, the SKKE protocol will progress via the exchange of the SKKE-2, SKKE-3, and SKKE-4
commands. Upon completion (or time-out), the status of the protocol is reported to the ZDO’s of the initiator
and responder devices. If successful, the initiator and responder will now share a link key and secure
communications will be possible.

Figure 87 Example end-to-end application key establishment procedure

Responder Trust Center Initiator

Request-Key Command(key, responder address)

Learn address of responder via discovery

or other means (e.g., preloaded)

Transport-Key Command(key, Initiator=TRUE,

PartnerAddress = Responder’s address)

Start a timer and send a link or master key to initiator and responder. The

trust center shall discard new request-key commands for this pair of

devices, unless they are from the initiator, until after the timer expires.

Transport-Key Command(key, Initiator=FALSE,

PartnerAddress = Initiator’s address)

Stores key and, if a master key,

initiates key establishment

Decides whether

to the store key

SKKE-1 Command

SKKE-2 Command

SKKE-3 Command

SKKE-4 Command

Responder decides whether to run

key-establishment protocol

Status of SKKE reported to ZDO Status of SKKE reported to ZDO

Security Services Specification

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 313

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.7.3.6 Network Leave

A device, its router, and the trust center shall follow the procedures described in this sub-clause when the
device is to leave the network.

3.7.3.6.1 Trust center operation

If a trust center wants a device to leave and if the trust center is not the router for that device, the trust center
shall send issue the APSME-REMOVE-DEVICE.request primitive, with the ParentAddress parameter set to
the router’s address and the ChildAddress parameter set to the address of the device it wishes to leave the
network.

The trust center will also be informed of devices that leave the network. Upon receipt of an APSME-
UPDATE-DEVICE.indication primitive with the Status parameter set to 0x02 (i.e., device left), the
DeviceAddress parameter shall indicate the address of the device that left the network and the SrcAddress
parameter shall indicate the address of parent of this device. If operating in commercial mode, the trust
center shall delete the leaving device from its list of network devices.

3.7.3.6.2 Router operation

Routers are responsible for receiving remove-device commands and for sending update-device commands.

Upon receipt of an APSME-REMOVE-DEVICE.indication primitive, if the SrcAddress parameter is equal
to the apsTrustCenterAddress attribute of the AIB, a router shall issue an NLME-LEAVE.request primitive
with the DeviceAddress parameter the same as the DeviceAddress parameter of the APSME-REMOVE-
DEVICE.indication primitive. The router shall ignore REMOVE-DEVICE.indication primitives with the
SrcAddress parameter not equal to the apsTrustCenterAddress attribute of the AIB.

Upon receipt of an NLME-LEAVE.indication primitive with the DeviceAddress parameter set to one of its
children, a router that is not also the trust center shall issue an APSME-UPDATE-DEVICE.request
primitive with, the DstAddress parameter set to the address of the trust center, the Status parameter set to
0x02 (i.e., device left), and the DeviceAddress parameter set to the DeviceAddress parameter of the NLME-
LEAVE.indication primitive. If the router is the trust center, it should simply operate as the trust center and
shall not issue the APSME-UPDATE-DEVICE.request primitive (see sub-clause 3.7.3.6.1).

3.7.3.6.3 Leaving device operation

Devices are responsible for receiving and sending disassociation notification commands.

In a secured ZigBee network, disassociation notification commands shall be secured with the Network key
and sent with security enabled at the level indicated by the nwkSecurityLevel attribute in the NIB.

In a secured ZigBee network, disassociation notification commands shall be received and processed only if
secured with the Network key and received with security enabled at the level indicated by the
nwkSecurityLevel attribute in the NIB.

3.7.3.6.4 Message sequence charts

Figure 88 shows an example message sequence chart in which a trust center asks a router to remove one of
its children from the network. If a trust center wants a device to leave and if the trust center is not the router
for that device, the trust center shall send the router a remove-device command with the address of the
device it wishes to leave the network. In a secure network, the remove-device command shall be secured
with a link key if present; otherwise shall be secured with the Network key. Upon receipt of the remove-
device command, a router shall send a disassociation notification command to the device to leave the
network.

ZigBee Specification

314 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 88 Example remove-device procedure

Figure 89 shows an example message sequence chart whereby a device notifies its router that it is
disassociating from the network. In this example, the device sends a disassociation notification command
(secured with the Network key) to its router. The router then sends a device-update command to the trust
center. In a secured network, the device-update command must be secured with the link key, if present, or
the Network key.

Figure 89 Example device-leave procedure

Device Router Trust Center

Remove-Device Command
1

Disassociation Notification Command
2

Note:
1. If a trust center wants a device to leave and if the trust center is not the router for that device, the trust center shall send the router

a remove-device command with the address of the device it wishes to leave the network.

2. A router shall send a disassociation command to cause one of its children to leave the network.

Device Router Trust Center

Update-Device Command
2

Disassociation Notification Command
1

Note:
1. A device leaving the network shall send a disassociation command to its router.

2. Upon receipt of a valid disassociation command, a router shall send an update-device command to the trust center to inform it

that a device has left the network.

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 315

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex A CCM* Mode of Operation
CCM* is a generic combined encryption and authentication block cipher mode. CCM* is only defined for
use with block ciphers with a 128-bit block size, such as AES-128 [B8]. The CCM* ideas can easily be
extended to other block sizes, but this will require further definitions.

The CCM* mode coincides with the original CCM mode specification [B20] for messages that require
authentication and, possibly, encryption, but does also offer support for messages that require only
encryption. As with the CCM mode, the CCM* mode requires only one key. The security proof for the CCM
mode [B21], [B22] carries over to the CCM* mode described here. The design of the CCM* mode takes into
account the results of [B23], thus allowing it to be securely used in implementation environments for which
the use of variable-length authentication tags, rather than fixed-length authentication tags only, is beneficial.

Prerequisites: The following are the prerequisites for the operation of the generic CCM* mode:

1. A block-cipher encryption function E shall have been chosen, with a 128-bit block size. The length in
bits of the keys used by the chosen encryption function is denoted by keylen.

2. A fixed representation of octets as binary strings shall have been chosen (e.g., most-significant-bit first
order or least-significant-bit-first order).

3. The length L of the message length field, in octets, shall have been chosen. Valid values for L are the
integers 2, 3,..., 8 (the value L=1 is reserved).

4. The length M of the authentication field, in octets, shall have been chosen. Valid values for M are the
integers 0, 4, 6, 8, 10, 12, 14, and 16. (The value M=0 corresponds to disabling authenticity, since then
the authentication field is the empty string.)

A.1 Notation and representation

Throughout this specification, the representation of integers as octet strings shall be fixed. All integers shall
be represented as octet strings in most-significant-octet first order. This representation conforms to the
conventions in Section 4.3 of ANSI X9.63-2001 [B7].

A.2 CCM* mode encryption and authentication transformation

The CCM* mode forward transformation involves the execution, in order, of an input transformation
(A.2.1), an authentication transformation (A.2.2), and encryption transformation (A.2.3).

Input: The CCM* mode forward transformation takes as inputs:

1. A bit string Key of length keylen bits to be used as the key. Each entity shall have evidence that access to
this key is restricted to the entity itself and its intended key sharing group member(s).

2. A nonce N of 15-L octets. Within the scope of any encryption key Key, the nonce value shall be unique.

3. An octet string m of length l(m) octets, where 0 ≤ l(m) < 28L.

4. An octet string a of length l(a) octets, where 0 ≤ l(a) < 264.

The nonce N shall encode the potential values for M such that one can uniquely determine from N the
actually used value of M. The exact format of the nonce N is outside the scope of this specification and shall
be determined and fixed by the actual implementation environment of the CCM* mode.

ZigBee Specification, Annex A

316 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Note: The exact format of the nonce N is left to the application, to allow simplified hardware and software
implementations in particular settings. Actual implementations of the CCM* mode may restrict the values of
M that are allowed throughout the life-cycle of the encryption key Key to a strict subset of those allowed in
the generic CCM* mode. If so, the format of the nonce N shall be such that one can uniquely determine from
N the actually used value of M in that particular subset. In particular, if M is fixed and the value M=0 is not
allowed, then there are no restrictions on N, in which case the CCM* mode reduces to the CCM mode.

A.2.1 Input transformation

This step involves the transformation of the input strings a and m to the strings AuthData and
PlainTextData, to be used by the authentication transformation and the encryption transformation,
respectively.

This step involves the following steps, in order:

1. Form the octet string representation L(a) of the length l(a) of the octet string a, as follows:

a) If l(a)=0, then L(a) is the empty string.

b) If 0 < l(a) < 216-28, then L(a) is the 2-octets encoding of l(a).

c) If 216-28 ≤ l(a) < 232, then L(a) is the right-concatenation of the octet 0xff, the octet 0xfe, and the 4-
octets encoding of l(a).

d) If 232 ≤ l(a) < 264, then L(a) is the right-concatenation of the octet 0xff, the octet 0xff, and the 8-
octets encoding of l(a).

2. Right-concatenate the octet string L(a) with the octet string a itself. Note that the resulting string
contains l(a) and a encoded in a reversible manner.

3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest
non-negative number of all-zero octets such that the octet string AddAuthData has length divisible by
16.

4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest
non-negative number of all-zero octets such that the octet string PlaintextData has length divisible by
16.

5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

AuthData = AddAuthData || PlaintextData. (1)

A.2.2 Authentication transformation

The data AuthData that was established above shall be tagged using the tagging transformation as follows:

1. Form the 1-octet Flags field consisting of the 1-bit Reserved field, the 1-bit Adata field, and the 3-bit
representations of the integers M and L, as follows:

Flags = Reserved || Adata || M || L. (2)

Here, the 1-bit Reserved field is reserved for future expansions and shall be set to ‘0’. The 1-bit Adata
field is set to ‘0’ if l(a)=0, and set to ‘1’ if l(a)>0. The L field is the 3-bit representation of the integer L-
1, in most-significant-bit-first order. The M field is the 3-bit representation of the integer (M-2)/2 if
M>0 and of the integer 0 if M=0, in most-significant-bit-first order.

2. Form the 16-octet B0 field consisting of the 1-octet Flags field defined above, the 15-L octet nonce field
N, and the L-octet representation of the length field l(m), as follows:

B0 = Flags || Nonce N || l(m).

CCM* Mode of Operation

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 317

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3. Parse the message AuthData as B1 || B2 || ... ||Bt, where each message block Bi is a 16-octet string.

The CBC-MAC value Xt+1 is defined by

X0 := 0128; Xi+1 := E(Key, Xi ⊕ Bi) for i=0, ... , t. (3)

Here, E(K, x) is the cipher-text that results from encryption of the plaintext x using the established
block-cipher encryption function E with key Key; the string 0128 is the 16-octet all-zero bit string.

The authentication tag T is the result of omitting all but the leftmost M octets of the CBC-MAC value
Xn+1 thus computed.

A.2.3 Encryption transformation

The data PlaintextData that was established in sub-clause A.2.1 (step 4) and the authentication tag T that
was established in sub-clause A.2.2 (step 3) shall be encrypted using the encryption transformation as
follows:

1. Form the 1-octet Flags field consisting of two 1-bit Reserved fields, and the 3-bit representations of the
integers 0 and L, as follows:

Flags = Reserved || Reserved || 0 || L. (4)

Here, the two 1-bit Reserved fields are reserved for future expansions and shall be set to ‘0’. The L field
is the 3-bit representation of the integer L-1, in most-significant-bit-first order. The ‘0’ field is the 3-bit
representation of the integer 0, in most-significant-bit-first order.

Define the 16-octet Ai field consisting of the 1-octet Flags field defined above, the 15-L octet nonce
field N, and the L-octet representation of the integer i, as follows:

Ai = Flags || Nonce N || Counter i, for i=0, 1, 2, … (5)

Note that this definition ensures that all the Ai fields are distinct from the B0 fields that are actually used,
as those have a Flags field with a non-zero encoding of M in the positions where all Ai fields have an
all-zero encoding of the integer 0 (see sub-clause A.2.2, step 2).

Parse the message PlaintextData as M1 || ... ||Mt, where each message block Mi is a 16-octet string.

The ciphertext blocks C1, ... , Ct are defined by

Ci := E(Key, Ai) ⊕ Mi for i=1, 2, ... , t. (6)

The string Ciphertext is the result of omitting all but the leftmost l(m) octets of the string C1 || ... || Ct.

Define the 16-octet encryption block S0 by

S0:= E(Key, A0). (7)

2. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M
octets of S0 and the authentication tag T.

Output: If any of the above operations has failed, then output ‘invalid’. Otherwise, output the right-
concatenation of the encrypted message Ciphertext and the encrypted authentication tag U.

ZigBee Specification, Annex A

318 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

A.3 CCM* mode decryption and authentication checking transformation

Input: The CCM* inverse transformation takes as inputs:

1. A bit string Key of length keylen bits to be used as the key. Each entity shall have evidence that access to
this key is restricted to the entity itself and its intended key-sharing group member(s).

2. A nonce N of 15-L octets. Within the scope of any encryption key Key, the nonce value shall be unique.

3. An octet string c of length l(c) octets, where 0 ≤ l(c)-M < 28L.

4. An octet string a of length l(a) octets, where 0 ≤ l(a) < 264.

A.3.1 Decryption transformation

The decryption transformation involves the following steps, in order:

1. Parse the message c as C ||U, where the right-most string U is an M-octet string. If this operation fails,
output ‘invalid’ and stop. U is the purported encrypted authentication tag. Note that the leftmost string
C has length l(c)-M octets.

2. Form the padded message CiphertextData by right-concatenating the string C with the smallest non-
negative number of all-zero octets such that the octet string CiphertextData has length divisible by 16.

3. Use the encryption transformation in sub-clause A.2.3, with as inputs the data CipherTextData and the
tag U.

4. Parse the output string resulting from applying this transformation as m || T, where the right-most string
T is an M-octet string. T is the purported authentication tag. Note that the leftmost string m has length
l(c)-M octets.

A.3.2 Authentication checking transformation

The authentication checking transformation involves the following steps:

1. Form the message AuthData using the input transformation in sub-clause A.2.1, with as inputs the
string a and the octet string m that was established in sub-clause A.3.1 (step 4).

2. Use the authentication transformation in sub-clause A.2.2, with as input the message AuthData.

3. Compare the output tag MACTag resulting from this transformation with the tag T that was established
in sub-clause A.3.1 (step 4). If MACTag=T, output ‘valid’; otherwise, output ‘invalid’ and stop.

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the octet string m.
Otherwise, accept the octet string m and accept one of the key sharing group member(s) as the source of
m.

A.4 Restrictions

All implementations shall limit the total amount of data that is encrypted with a single key. The CCM*
encryption transformation shall invoke not more than 261 block-cipher encryption function operations in
total, both for the CBC-MAC and for the CTR encryption operations.

At CCM* decryption, one shall verify the (truncated) CBC-MAC before releasing any information, such as,
e.g., plaintext. If the CBC-MAC verification fails, only the fact that the CBC-MAC verification failed shall
be exposed; all other information shall be destroyed.

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 319

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex B Security Building Blocks
This annex specifies the cryptographic primitives and mechanisms that are used to implement the security
protocols in this standard.

B.1 Symmetric-key cryptographic building blocks

The following symmetric-key cryptographic primitives and data elements are defined for use with all
security-processing operations specified in this standard.

B.1.1 Block-cipher

The block-cipher used in this specification shall be the Advanced Encryption Standard AES-128, as
specified in FIPS Pub 197 [B8]. This block-cipher has a key size keylen that is equal to the block size, in
bits, i.e., keylen=128.

B.1.2 Mode of operation

The block-cipher mode of operation used in this specification shall be the CCM* mode of operation, as
specified in Annex A, with the following instantiations:

1. Each entity shall use the block-cipher E as specified in sub-clause B.1.1;

2. All octets shall be represented as specified in section "Preface";

3. The parameter L shall have the integer value 2;

4. The parameter M shall have one of the following integer values: 0, 4, 8, or 16.

B.1.3 Cryptographic hash function

The cryptographic hash function used in this specification shall be the block-cipher based cryptographic
hash function specified in clause B.6, with the following instantiations:

1. Each entity shall use the block-cipher E as specified in section sub-clause B.1.1;

2. All integers and octets shall be represented as specified in section "Preface".

The Matyas-Meyer-Oseas hash function (specified in clause B.6) has a message digest size hashlen that is
equal to the block size, in bits, of the established block-cipher.

B.1.4 Keyed hash function for message authentication

The keyed hash message authentication code (HMAC) used in this specification shall be HMAC, as
specified in the FIPS Pub 198 [B9], with the following instantiations:

1. Each entity shall use the cryptographic hash H function as specified in sub-clause B.1.3;

2. The block size B shall have the integer value 16 (this block size specifies the length of the data integrity
key, in bytes, that is used by the keyed hash function, i.e., it uses a 128-bit data integrity key);

3. The output size HMAClen of the HMAC function shall have the same integer value as the message
digest parameter hashlen as specified in sub-clause B.1.3.

ZigBee Specification, Annex B

320 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

B.1.5 Specialized keyed hash function for message authentication

The specialized208 keyed hash message authentication code used in this specification shall be the keyed hash
message authentication code, as specified in sub-clause B.1.4.

B.1.6 Challenge domain parameters

The challenge domain parameters used in the specification shall be as specified in sub-clause B.3.1, with the
following instantiation: (minchallengelen, maxchallengelen)=(128,128).

All challenges shall be validated using the challenge validation primitive as specified in clause B.4.

B.2 Key Agreement Schemes

B.2.1 Symmetric-key key agreement scheme

The symmetric-key key agreement protocols in this standard shall use the full symmetric-key with key
confirmation scheme as specified in clause B.7, with the following instantiations:

1. Each entity shall be identified as specified in "Preface";

2. Each entity shall use the HMAC-scheme as specified in sub-clause B.1.4;

3. Each entity shall use the specialized HMAC-scheme as specified in sub-clause B.1.5;

4. Each entity shall use the cryptographic hash function as specified in sub-clause B.1.3.,

5. The parameter keydatalen shall have the same integer value as the key size parameter keylen as
specified in sub-clause B.1.1;

6. The parameter SharedData shall be the empty string; parameter shareddatalen shall have the integer
value 0;

7. The optional parameters Text1 and Text2 as specified in sub-clause B.7.1 and sub-clause B.7.2 shall
both be the empty string.

8. Each entity shall use the challenge domain parameters as specified in sub-clause B.1.6.

9. All octets shall be represented as specified in section "Preface".

B.3 Challenge Domain Parameter Generation and Validation

This section specifies the primitives that shall be used to generate and validate challenge domain parameters.

Challenge domain parameters impose constraints on the length(s) of bit challenges a scheme expects. As
such, this determine a bound on the entropy of challenges and, thereby, on the security of the cryptographic
schemes in which these challenges are used. In most schemes, the challenge domain parameters will be such
that only challenges of a fixed length will be accepted (e.g., 128-bit challenges). However, one may define
the challenge domain parameters such that challenges of varying length might be accepted. The latter is
useful in contexts where entities that wish to engage in cryptographic schemes might have a bad random

208This refers to a MAC scheme where the MAC function has the additional property that it is also pre-image and collision resistant for
parties knowing the key (see also Remark 9.8 of [B18]). Such MAC functions allow key derivation in contexts where unilateral key
control is undesirable.

Security Building Blocks

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 321

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

number generator on-board. Allowing both entities that engage in a scheme to contribute sufficiently long
inputs enables each of these to contribute sufficient entropy to the scheme at hand.

In this standard, challenge domain parameters will be shared by a number of entities using a scheme of the
standard. The challenge domain parameters may be public; the security of the system does not rely on these
parameters being secret.

B.3.1 Challenge Domain Parameter Generation

Challenge domain parameters shall be generated using the following routine.

Input: This routine does not take any input.

Actions: The following actions are taken:

1. Choose two nonnegative integers minchallengelen and maxchallengelen, such that minchallengelen ≤
maxchallengelen.

Output: Challenge domain parameters D=(minchallengelen, maxchallengelen).

B.3.2 Challenge Domain Parameter Verification

Challenge domain parameters shall be verified using the following routine.

Input: Purported set of challenge domain parameters D=(minchallengelen, maxchallengelen).

Actions: The following checks are made:

1. Check that minchallengelen and maxchallengelen are nonnegative integers.

2. Check that minchallengelen ≤ maxchallengelen.

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the challenge domain
parameters. Otherwise, output ‘valid’ and accept the challenge domain parameters.

B.4 Challenge Validation Primitive

Challenge validation refers to the process of checking the length properties of a challenge. It is used to check
whether a challenge to be used by a scheme in the standard has sufficient length (e.g., messages that are too
short are discarded, due to insufficient entropy).

The challenge validation primitive is used in clause B.7.

Input: The input of the validation transformation is a valid set of challenge domain parameters
D=(minchallengelen, maxchallengelen), together with the bit string Challenge.

Actions: The following actions are taken:

1. Compute the bit-length challengelen of the bit string Challenge.

2. Verify that challengelen ∈ [minchallengelen, maxchallengelen]. (That is, verify that the challenge has
an appropriate length.)

Output: If the above verification fails, then output ‘invalid’ and reject the challenge. Otherwise, output
‘valid’ and accept the challenge.

ZigBee Specification, Annex B

322 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

B.5 Secret Key Generation (SKG) Primitive

This section specifies the SKG primitive that shall be used by the symmetric-key key agreement schemes
specified in this standard.

This primitive derives a shared secret value from a challenge owned by an entity U1 and a challenge owned
by an entity U2 when all the challenges share the same challenge domain parameters. If the two entities both
correctly execute this primitive with corresponding challenges as inputs, the same shared secret value will
be produced.

The shared secret value shall be calculated as follows:

Prerequisites: The following are the prerequisites for the use of the SKG primitive:

1. Each entity shall be bound to a unique identifier (e.g., distinguished names). All identifiers shall be bit
strings of the same length entlen bits. Entity U1’s identifier will be denoted by the bit string U1. Entity
U2’s identifier will be denoted by the bit string U2.

2. A specialized209 MAC scheme shall have been chosen, with tagging transformation as specified in
Section 5.7.1 of ANSI X9.63-2001 [B7]. The length in bits of the keys used by the specialized MAC
scheme is denoted by mackeylen.

Input: The SKG primitive takes as input:

1. A bit string MACKey of length mackeylen bits to be used as the key of the established specialized MAC
scheme.

2. A bit string QEU1 owned by U1.

3. A bit string QEU2 owned by U2.

Actions: The following actions are taken:

1. Form the bit string consisting of U1’s identifier, U2’s identifier, the bit string QEU1 corresponding to
U1’s challenge, and the bit string QEU2 corresponding to QEU2’s challenge:

MacData = U1 || U2 || QEU1 || QEU2. (8)

2. Calculate the tag MacTag for MacData under the key MacKey using the tagging transformation of the
established specialized MAC scheme:

MacTag = MACMacKey(MacData). (9)

3. If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop.

4. Set Z=MacTag.

Output: The bit string Z as the shared secret value.

209This refers to a MAC scheme where the MAC function has the additional property that it is also pre-
image and collision resistant for parties knowing the key (see also Remark 9.8 of [B18]). Such MAC
functions allow key derivation in contexts where unilateral key control is undesirable.

Security Building Blocks

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 323

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

B.6 Block-Cipher-Based Cryptographic Hash Function

This section specifies the Matyas-Meyer-Oseas hash function, a cryptographic hash function based on
block-ciphers. We define this hash function for block-ciphers with a key size that is equal to the block size,
such as AES-128, and with a particular choice for the fixed initialization vector IV (we take IV=0). For a
more general definition of the Matyas-Meyer-Oseas hash function, we refer to Section 9.4.1 of [B18].

Prerequisites: The following are the prerequisites for the operation of Matyas-Meyer-Oseas hash function:

1. A block-cipher encryption function E shall have been chosen, with a key size that is equal to the block
size. The Matyas-Meyer-Oseas hash function has a message digest size that is equal to the block size of
the established encryption function. It operates on bit strings of length less than 2n, where n is the block
size, in octets, of the established block-cipher.

2. A fixed representation of integers as binary strings or octet strings shall have been chosen.

Input: The input to the Matyas-Meyer-Oseas hash function is as follows:

1. A bit string M of length l bits, where 0≤ l < 2n.

Actions: The hash value shall be derived as follows:

1. Pad the message M according to the following method:

a) Right-concatenate to the message M the binary consisting of the bit ‘1’ followed by k ‘0’ bits, where
k is the smallest non-negative solution to the equation

l+1+k ≡ 7n (mod 8n). (10)

b) Form the padded message M’ by right-concatenating to the resulting string the n-bit string that is
equal to the binary representation of the integer l.

2. Parse the padded message M’ as M1 || M2|| … || Mt where each message block Mi is an n-octet string.

3. The output Hasht is defined by

Hash0 =08n; Hashj =E(Hashj-1, Mj) ⊕ Mj for j=1,…,t. (11)

Here, E(K, x) is the ciphertext that results from encryption of the plaintext x, using the established
block-cipher encryption function E with key K; the string 08n is the n-octet all-zero bit string.

Output: The bit string Hasht as the hash value.

Note that the cryptographic hash function operates on bit strength of length less than 2n bits, where n is the
block size (or key size) of the established block cipher, in bytes. For example, the Matyas-Meyer-Oseas hash
function with AES-128 operates on bit strings of length less than 216 bits. It is assumed that all hash function
calls are on bit strings of length less than 2n bits. Any scheme attempting to call the hash function on a bit
string exceeding 2n bits shall output ‘invalid’ and stop.

B.7 Symmetric-Key Authenticated Key Agreement Scheme

This section specifies the full symmetric-key key agreement with key confirmation scheme. A MAC scheme
is used to provide key confirmation.

Figure 90 illustrates the messaging involved in the use of the full symmetric-key key agreement with key
confirmation scheme.

ZigBee Specification, Annex B

324 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 90 Symmetric-Key Authenticated Key Agreement Scheme

The scheme is ‘asymmetric’ so two transformations are specified. U uses the transformation specified in
sub-clause B.7.1 to agree on keying data with V if U is the protocol’s initiator, and V uses the transformation
specified in sub-clause B.7.2 to agree on keying data with U if V is the protocol’s responder.

The essential difference between the role of the initiator and the role of the responder is merely that the
initiator sends the first pass of the exchange.

If U executes the initiator transformation, and V executes the responder transformation with the shared
secret keying material as input, then U and V will compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s challenge domain parameters D=(minchallengelen,
maxchallengelen).

2. Each entity shall have access to a bit string Key of length keylen bits to be used as the key. Each party
shall have evidence that access to this key is restricted to the entity itself and the other entity involved in
the symmetric-key authenticated key agreement scheme.

3. Each entity shall be bound to a unique identifier (e.g., distinguished names). All identifiers shall be bit
strings of the same length entlen bits. Entity U’s identifier will be denoted by the bit string U. Entity V’s
identifier will be denoted by the bit string V.

4. Each entity shall have decided which MAC scheme to use as specified in Section 5.7 of ANSI X9.63-
2001 [B7]. The length in bits of the keys used by the chosen MAC scheme is denoted by mackeylen.

5. A cryptographic hash function shall have been chosen for use with the key derivation function.

6. A specialized210 MAC scheme shall have been chosen for use with the secret key generation primitive
with tagging transformation as specified in Section 5.7.1 of ANSI X9.63-2001 [B7]. The length in bits
of the keys used by the specialized MAC scheme is denoted by keylen.

7. A fixed representation of octets as binary strings shall have been chosen. (e.g., most-significant-bit-first
order or least-significant-bit-first order).

210This refers to a MAC function with the additional property that it is also pre-image and collision resistant for parties knowing the
key (see also Remark 9.8 of [B18]. Specialized MAC functions allow key derivation in contexts where unilateral key control is undesir-
able.

QEV, MACMacKey(0216 || V || U || QEV || QEU || [Text1]), [Text1]

MACMacKey(0316 || U || V || QEU || QEV || [Text2]), [Text2]

U V

Key

QEU

Security Building Blocks

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 325

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

B.7.1 Initiator Transformation

U shall execute the following transformation to agree on keying data with V if U is the protocol’s initiator. U
shall obtain an authentic copy of V’s identifier and an authentic copy of the static secret key Key shared with
V.

Input: The input to the initiator transformation is:

1. An integer keydatalen that is the length in bits of the keying data to be generated.

2. (Optional) A bit string SharedData of length shareddatalen bits that consists of some data shared by U
and V.

3. (Optional) A bit string Text2 that consists of some additional data to be provided from U to V.

Ingredients: The initiator transformation employs the challenge generation primitive in Section 5.3 of
ANSI X9.63-2001 [B7], the challenge validation primitive in sub-clause B.3.2, the SKG primitive in sub-
clause B.5, the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7], and one of the MAC
schemes in Section 5.7 of ANSI X9.63-2001 [B7].

Actions: Keying data shall be derived as follows:

1. Use the challenge generation primitive in Section 5.3 of ANSI X9.63-2001 [B7] to generate a challenge
QEU for the challenge domain parameters D. Send QEU to V.

2. Then receive from V a challenge QEV’ purportedly owned by V. If this value is not received, output
‘invalid’ and stop.

3. Receive from V an optional bit string Text1, and a purported tag MacTag1’. If these values are not
received, output ‘invalid’ and stop.

4. Verify that QEV’ is a valid challenge for the challenge domain parameters D as specified in section sub-
clause B.3.2. If the validation primitive rejects the challenge, output ‘invalid’ and stop.

5. Use the SKG primitive in clause B.5 to derive a shared secret bit string Z from the challenges Q1=QEU
owned by U and Q2=QEV’ owned by V, using as key the shared key Key. If the SKG primitive outputs
‘invalid’, output ‘invalid’ and stop.

6. Use the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7] with the established hash
function to derive keying data KKeyData of length mackeylen+keydatalen bits from the shared secret
value Z and the shared data [SharedData].

7. Parse the leftmost mackeylen bits of KKeyData as a MAC key MacKey and the remaining bits as keying
data KeyData.

8. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string QEV’, the bit
string QEU, and if present Text1:

MacData1 = 0216 || V || U || QEV’ || QEU || [Text1]. (12)

9. Verify that MacTag1’ is the tag for MacData1 under the key MacKey using the tag checking
transformation of the appropriate MAC scheme specified in Section 5.7.2 of ANSI X9.63-2001 [B7]. If
the tag checking transformation outputs ‘invalid’, output ‘invalid’ and stop.

10. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string QEU
corresponding to U’s challenge, the bit string QEV’ corresponding to V’s challenge, and optionally a bit
string Text2:

MacData2 = 0316 || U || V || QEU || QEV’ || [Text2]. (13)

ZigBee Specification, Annex B

326 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

11. Calculate the tag MacTag2 on MacData2 under the key MacKey using the tagging transformation of the
appropriate MAC scheme specified in Section 5.7.1 of ANSI X9.63-2001 [B7]:

MacTag2 = MACMacKey(MacData2). (14)

12. If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send MacTag2 and, if present,
Text2 to V.

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the bit strings KeyData
and Text1. Otherwise, output ‘valid’, accept the bit string KeyData as the keying data of length keydatalen
bits shared with V and accept V as the source of the bit string Text1 (if present).

B.7.2 Responder Transformation

V shall execute the following transformation to agree on keying data with U if V is the protocol’s responder.
V shall obtain an authentic copy of U’s identifier and an authentic copy of the static secret key Key shared
with U.

Input: The input to the responder transformation is:

1. A challenge QEU’ purportedly owned by U.

2. An integer keydatalen that is the length in bits of the keying data to be generated.

3. (Optional) A bit string SharedData of length shareddatalen bits that consists of some data shared by U
and V.

4. (Optional) A bit string Text1 that consists of some additional data to be provided from V to U.

Ingredients: The responder transformation employs the challenge generation primitive in Section 5.3 of
ANSI X9.63-2001 [B7], the challenge validation primitive in sub-clause B.3.2, the SKG primitive in
clause B.5, the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7], and one of the MAC
schemes in Section 5.7 of ANSI X9.63-2001 [B7].

Actions: Keying data shall be derived as follows:

1. Verify that QEU’ is a valid challenge for the challenge domain parameters D as specified in sub-
clause B.3.2. If the validation primitive rejects the challenge, output ‘invalid’ and stop.

2. Use the challenge generation primitive in Section 5.3 of ANSI X9.63-2001 [B7] to generate a challenge
QEV for the challenge domain parameters D. Send to U the challenge QEV.

3. Use the SKG primitive in clause B.5 to derive a shared secret bit string Z from the challenges Q1=QEU’
owned by U and Q2=QEV owned by V, using as key the shared key Key. If the SKG primitive outputs
‘invalid’, output ‘invalid’ and stop.

4. Use the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7] with the established hash
function to derive keying data KKeyData of length mackeylen+keydatalen bits from the shared secret
value Z and the shared data [SharedData].

5. Parse the leftmost mackeylen bits of KKeyData as a MAC key MacKey and the remaining bits as keying
data KeyData.

6. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string QEV, the bit
string QEU’, and, optionally, a bit string Text1:

MacData1 = 0216 || V || U || QEV || QEU’ || [Text1]. (15)

Security Building Blocks

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 327

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7. Calculate the tag MacTag1 for MacData1 under the key MacKey using the tagging transformation of the
appropriate MAC scheme specified in Section 5.7 of ANSI X9.63-2001 [B7]:

MacTag1 = MACMacKey(MacData1). (16)

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send to U, if present the bit
string Text1, and MacTag1.

8. Then receive from U an optional bit string Text2 and a purported tag MacTag2’. If this data is not
received, output ‘invalid’ and stop.

9. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string QEU’
corresponding to U’s purported challenge, the bit string QEV corresponding to V’s challenge, and the
bit string Text2 (if present):

MacData2 = 0316 || U || V || QEU’ || QEV || [Text2]. (17)

10. Verify that MacTag2’ is the valid tag on MacData2 under the key MacKey using the tag checking
transformation of the appropriate MAC scheme specified in Section 5.7 ANSI X9.63-2001 [B7]. If the
tag checking transformation outputs ‘invalid’, output ‘invalid’ and stop.

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the bit strings KeyData
and Text2. Otherwise, output ‘valid’, accept the bit string KeyData as the keying data of length keydatalen
bits shared with U and accept U as the source of the bit string Text2 (if present).

ZigBee Specification, Annex B

328 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 329

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex C Test Vectors for Cryptographic Building
Blocks
This annex provides sample test vectors for the ZigBee community, aimed at assisting in building
interoperable security implementations. The sample test vectors are provided as is, pending independent
validation.

C.1 Data Conversions

For test vectors, see Appendix J1 of ANSI X9.63-2001 [B7].

C.2 AES Block Cipher

This annex provides sample test vectors for the block-cipher specified in sub-clause B.1.1.

For test vectors, see FIPS Pub 197 [B8].

C.3 CCM* Mode Encryption and Authentication Transformation

This annex provides sample test vectors for the mode of operation as specified in sub-clause B.1.2.

Prerequisites: The following prerequisites are established for the operation of the mode of operation:

1. The parameter M shall have the integer value 8.

Input: The inputs to the mode of operation are:

1. The key Key of size keylen=128 bits to be used:

Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF. (18)

2. The nonce N of 15-L=13 octets to be used:

Nonce = A0 A1 A2 A3 A4 A5 A6 A7 || 03 02 01 00 || 06. (19)

3. The octet string m of length l(m)=23 octets to be used:

m = 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E. (20)

4. The octet string a of length l(a)=8 octets to be used:

a = 00 01 02 03 04 05 06 07. (21)

C.3.1 Input Transformation

This step involves the transformation of the input strings a and m to the strings AuthData and
PlainTextData, to be used by the authentication transformation and the encryption transformation,
respectively.

1. Form the octet string representation L(a) of the length l(a) of the octet string a:

ZigBee Specification, Annex C

330 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

L(a) = 00 08.

2. Right-concatenate the octet string L(a) and the octet string a itself:

L(a) || a = 00 08 || 00 01 02 03 04 05 06 07.

3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest
non-negative number of all-zero octets such that the octet string AddAuthData has length divisible by
16:

AddAuthData = 00 08 || 00 01 02 03 04 05 06 07 || 00 00 00 00 00 00.

4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest
non-negative number of all-zero octets such that the octet string PlaintextData has length divisible by
16:

PlaintextData = 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 ||

18 19 1A 1B 1C 1D 1E || 00 00 00 00 00 00 00 00 00.

5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

AuthData = 00 08 00 01 02 03 04 05 06 07 00 00 00 00 00 00 ||

08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00.

C.3.2 Authentication Transformation

The data AuthData that was established above shall be tagged using the tagging transformation as follows:

1. Form the 1-octet Flags field as follows:

Flags = 59.

2. Form the 16-octet B0 field as follows:

B0 = 59 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 17.

3. Parse the message AuthData as B1 || B2 ||B3, where each message block Bi is a 16-octet string.

4. The CBC-MAC value X4 is computed as follows:

The authentication tag T is the result of omitting all but the leftmost M=8 octets of the CBC-MAC value X4:

T = B9 D7 89 67 04 BC FA 20.

i Bi Xi

0 59 A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 00 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1 00 08 00 01 02 03 04 05 06 07 00 00 00 00 00 00 F7 74 D1 6E A7 2D C0 B3 E4 5E 36 CA 8F 24 3B 1A

2 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 90 2E 72 58 AE 5A 4B 5D 85 7A 25 19 F3 C7 3A B3

3 18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00 5A B2 C8 6E 3E DA 23 D2 7C 49 7D DF 49 BB B4 09

4 æ B9 D7 89 67 04 BC FA 20 B2 10 36 74 45 F9 83 D6

Test Vectors for Cryptographic Building Blocks

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 331

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

C.3.3 Encryption Transformation

The data PlaintextData shall be encrypted using the encryption transformation as follows:

1. Form the 1-octet Flags field as follows:

Flags = 01.

2. Define the 16-octet Ai field as follows:

3. Parse the message PlaintextData as M1 ||M2, where each message block Mi is a 16-octet string.

4. The ciphertext blocks C1, C2 are computed as follows:

5. The string Ciphertext is the result of omitting all but the leftmost l(m)=23 octets of the string C1 ||C2:

CipherText = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8.

6. Define the 16-octet encryption block S0 by

S0 = E(Key, A0)= B3 5E D5 A6 DC 43 6E 49 D6 17 2F 54 77 EB B4 39.

7. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M=8
octets of S0 and the authentication tag T:

U = 0A 89 5C C1 D8 FF 94 69.

Output: the right-concatenation c of the encrypted message Ciphertext and the encrypted authentication tag
U:

c = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8 ||

 0A 89 5C C1 D8 FF 94 69.

C.4 CCM* Mode Decryption and Authentication Checking Transformation

This annex provides sample test vectors for the inverse of the mode of operation as specified in sub-clause
B.1.2.

Prerequisites: The following prerequisites are established for the operation of the mode of operation:

1. The parameter M shall have the integer value 8.

i Ai

0 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 00

1 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 01

2 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 02

i AES(Key,Ai) Ci = AES(Key,Ai) ⊕ Mi

1 12 5C A9 61 B7 61 6F 02 16 7A 21 66 70 89 F9 07 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10

2 CC 7F 54 D1 C4 49 B6 35 46 21 46 03 AA C6 2A 17 D4 66 4E CA D8 54 A8 35 46 21 46 03 AA C6 2A 17

ZigBee Specification, Annex C

332 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Input: The inputs to the inverse mode of operation are:

1. The key Key of size keylen=128 bits to be used:

Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

2. The nonce N of 15-L=13 octets to be used:

Nonce = A0 A1 A2 A3 A4 A5 A6 A7 || 03 02 01 00 || 06.

3. The octet string c of length l(c)=31 octets to be used:

c = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8 ||
 0A 89 5C C1 D8 FF 94 69.

4. The octet string a of length l(a)=8 octets to be used:

a = 00 01 02 03 04 05 06 07.

C.4.1 Decryption Transformation

The decryption transformation involves the following steps, in order:

1. Parse the message c as C ||U, where the right-most string U is an M-octet string:

C = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8;

U = 0A 89 5C C1 D8 FF 94 69.

2. Form the padded message CiphertextData by right-concatenating the string C with the smallest non-
negative number of all-zero octets such that the octet string CiphertextData has length divisible by 16.

CipherTextData = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 ||
 D4 66 4E CA D8 54 A8 || 00 00 00 00 00 00 00 00.

3. Form the 1-octet Flags field as follows:

Flags = 01.

4. Define the 16-octet Ai field as follows:

5. Parse the message CiphertextData as C1 ||C2, where each message block Ci is a 16-octet string.

6. The ciphertext blocks P1, P2 are computed as follows:

i Ai

0 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 00

1 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 01

2 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 02

i AES(Key,Ai) Pi= AES(Key,Ai) ⊕ Ci

1 12 5C A9 61 B7 61 6F 02 16 7A 21 66 70 89 F9 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

2 CC 7F 54 D1 C4 49 B6 35 46 21 46 03 AA C6 2A 17 18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00

Test Vectors for Cryptographic Building Blocks

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 333

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7. The octet string m is the result of omitting all but the leftmost l(m)=23 octets of the string P1 || P2:

m = 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 || 18 19 1A 1B 1C 1D 1E.

8. Define the 16-octet encryption block S0 by

S0 = E(Key, A0)= B3 5E D5 A6 DC 43 6E 49 D6 17 2F 54 77 EB B4 39.

9. The purported authentication tag T is the result of XOR-ing the string consisting of the leftmost M=8
octets of S0 and the octet string U:

T = B9 D7 89 67 04 BC FA 20.

C.4.2 Authentication Checking Transformation

The authentication checking transformation involves the following steps:

1. Form the message AuthData using the input transformation in sub-clause C.3.1, with as inputs the string
a and the octet string m that was established in sub-clause C.4.1(step 7.):

AuthData = 08 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00 ||
 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00.

2. Use the authentication transformation in sub-clause C.3.2, with as input the message AuthData to
compute the authentication tag MACTag:

MACTag = B9 D7 89 67 04 BC FA 20.

3. Compare the output tag MACTag resulting from this transformation with the tag T that was established
in sub-clause C.4.1(step 9.):

T = B9 D7 89 67 04 BC FA 20 = MACTag.

Output: Since MACTag=T, output ‘valid’ and accept the octet string m and accept one of the key sharing
group member(s) as the source of m.

C.5 Cryptographic Hash Function

This annex provides sample test vectors for the cryptographic hash function specified in clause C.5.

C.5.1 Test Vector Set 1

Input: The input to the cryptographic hash function is as follows:

1. The bit string M of length l=8 bits to be used:

M=C0.

Actions: The hash value shall be derived as follows:

1. Pad the message M by right-concatenating to M the bit ‘1’ followed by the smallest non-negative
number of ‘0’ bits, such that the resulting string has length 14 (mod 16) octets:

C0 || 80 00 00 00 00 00 00 00 00 00 00 00 00.

ZigBee Specification, Annex C

334 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

2. Form the padded message M’ by right-concatenating to the resulting string the 16-bit string that is equal
to the binary representation of the integer l.

M’ = C0 || 80 00 00 00 00 00 00 00 00 00 00 00 00 || 00 08.

3. Parse the padded message M’ as M1, where each message block Mi is a 16-octet string.

4. The hash value Hash1 is computed as follows:

Output: the 16-octet string Hash = Hash1 = AE 3A 10 2A 28 D4 3E E0 D4 A0 9E 22 78 8B 20 6C.

C.5.2 Test Vector Set 2

Input: The input to the cryptographic hash function is as follows:

5. The bit string M of length l=128 bits to be used:

M=C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

Actions: The hash value shall be derived as follows:

1. Pad the message M by right-concatenating to M the bit ‘1’ followed by the smallest non-negative
number of ‘0’ bits, such that the resulting string has length 14 (mod 16) octets:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF ||
80 00 00 00 00 00 00 00 00 00 00 00 00 00.

2. Form the padded message M’ by right-concatenating to the resulting string the 16-bit string that is equal
to the binary representation of the integer l.

M’ = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF ||
80 00 00 00 00 00 00 00 00 00 00 00 00 00 || 00 80.

3. Parse the padded message M’ as M1 || M2, where each message block Mi is a 16-octet string.

4. The hash value Hash2 is computed as follows:

Output: the 16-octet string Hash = Hash2 = A7 97 7E 88 BC 0B 61 E8 21 08 27 10 9A 22 8F 2D.

i Hashi Mi

0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 æ

1 AE 3A 10 2A 28 D4 3E E0 D4 A0 9E 22 78 8B 20 6C C0 80 00 00 00 00 00 00 00 00 00 00 00 00 00 08

i Hashi Mi

0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 æ

1 84 EE 75 E5 4F 9A 52 0F 0B 30 9C 35 29 1F 83 4F C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

2 A7 97 7E 88 BC 0B 61 E8 21 08 27 10 9A 22 8F 2D 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08

Test Vectors for Cryptographic Building Blocks

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 335

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

C.6 Keyed Hash Function for Message Authentication

This annex provides sample test vectors for the keyed hash function for message authentication as specified
in clause C.6.

C.6.1 Test Vector Set 1

Input: The input to the keyed hash function is as follows:

1. The key Key of size keylen=128 bits to be used:

Key = 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F.

2. The bit string M of length l=8 bits to be used:

M=C0.

Actions: The keyed hash value shall be derived as follows:

1. Create the 16-octet string ipad (inner pad) as follows:

ipad = 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36.

2. Form the inner key Key1 by XOR-ing the bit string Key and the octet string ipad:

Key1 = Key ⊕ ipad = 76 77 74 75 72 73 70 71 7E 7F 7C 7D 7A 7B 78 79.

3. Form the padded message M1 by right-concatenating the bit string Key1 with the bit string M:

M1 = Key1 || M = 76 77 74 75 72 73 70 71 7E 7F 7C 7D 7A 7B 78 79 || C0.

4. Compute the hash value Hash1 of the bit string M1:

Hash1 = 3C 3D 53 75 29 A7 A9 A0 3F 66 9D CD 88 6C B5 2C.

5. Create the 16-octet string opad (outer pad) as follows:

opad = 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C.

6. Form the outer key Key2 by XOR-ing the bit string Key and the octet string opad:

Key2 = Key ⊕ opad = 1C 1D 1E 1F 18 19 1A 1B 14 15 16 17 10 11 12 13.

7. Form the padded message M2 by right-concatenating the bit string Key2 with the bit string Hash1:

M2 = Key2 || Hash1 =1C 1D 1E 1F 18 19 1A 1B 14 15 16 17 10 11 12 13 ||
3C 3D 53 75 29 A7 A9 A0 3F 66 9D CD 88 6C B5 2C.

8. Compute the hash value Hash2 of the bit string M2:

Hash2 = 45 12 80 7B F9 4C B3 40 0F 0E 2C 25 FB 76 E9 99.

Output: the 16-octet string HMAC = Hash2 = 45 12 80 7B F9 4C B3 40 0F 0E 2C 25 FB 76 E9 99.

C.6.2 Test Vector Set 2

Input: The input to the keyed hash function is as follows:

ZigBee Specification, Annex C

336 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

1. The key Key of size keylen=256 bits to be used:

Key = 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F ||
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F.

2. The bit string M of length l=128 bits to be used:

M = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

Actions: The keyed hash value shall be derived as follows:

1. Compute the hash value Key0 of the bit string Key:

Key0 = 22 F4 0C BE 15 66 AC CF EB 77 77 E1 C4 A9 BB 43.

2. Create the 16-octet string ipad (inner pad) as follows:

ipad = 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36.

3. Form the inner key Key1 by XOR-ing the bit key Key0 and the octet string ipad:

Key1 = Key0 ⊕ ipad = 14 C2 3A 88 23 50 9A F9 DD 41 41 D7 F2 9F 8D 75.

4. Form the padded message M1 by right-concatenating the bit string Key1 with the bit string M:

M1 = Key1 || M = 14 C2 3A 88 23 50 9A F9 DD 41 41 D7 F2 9F 8D 75 ||
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

5. Compute the hash value Hash1 of the bit string M1:

Hash1 = 42 65 BE 29 74 55 8C A2 7B 77 85 AC 73 F2 22 10.

6. Create the 16-octet string opad (outer pad) as follows:

opad = 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C.

7. Form the outer key Key2 by XOR-ing the bit string Key0 and the octet string opad:

Key2 = Key0 ⊕ opad = 7E A8 50 E2 49 3A F0 93 B7 2B 2B BD 98 F5 E7 1F.

8. Form the padded message M2 by right-concatenating the bit string Key2 with the bit string Hash1:

M2 = Key2 || Hash1 = 7E A8 50 E2 49 3A F0 93 B7 2B 2B BD 98 F5 E7 1F ||
42 65 BE 29 74 55 8C A2 7B 77 85 AC 73 F2 22 10.

9. Compute the hash value Hash2 of the bit string M2:

Hash2 = A3 B0 07 99 84 BF 15 57 F7 4A 0D 63 87 E0 A1 1A.

Output: the 16-octet string HMAC = Hash2 = A3 B0 07 99 84 BF 15 57 F7 4A 0D 63 87 E0 A1 1A.

C.7 Specialized Keyed Hash Function for Message Authentication

This annex provides sample test vectors for the specialized keyed hash function for message authentication
as specified in clause C.7.

For test vectors, see clause C.6.

Test Vectors for Cryptographic Building Blocks

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 337

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

C.8 Symmetric-Key Key Agreement Scheme

This annex provides sample test vectors for the symmetric-key key agreement scheme as specified in clause
C.8.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. The unique identifiers of the entities U and V to be used:

U’s identifier: U=55 73 65 72 20 55 0D 0A;

V’s identifier: V=55 73 65 72 20 56 0D 0A.

2. The key Key of length keylen=128 bits to be used:

Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

3. The optional parameter SharedData of length shareddatalen=48 bits to be used:

SharedData = D0 D1 D2 D3 D4 D5.

C.8.1 Initiator Transformation

U obtains an authentic copy of V’s identifier and an authentic copy of the static secret key Key shared with
V.

Input: The input to the initiator transformation is:

1. The length keydatalen in bits of the keying data to be generated: keydatalen=128.

2. The optional bit string Text2 to be used is not present, i.e., Text2 = ε (the empty string).

Actions: U derives keying data as follows:

1. Use the challenge generation primitive in Section 5.3 of ANSI X9.63-2001 [B7] to generate a challenge
QEU for the challenge domain parameters D. Send QEU to V.
QEU = 9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96.

2. Then receive from V a challenge QEV’ purportedly owned by V. If this value is not received, output
‘invalid’ and stop.
QEV’ = BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53.

3. Receive from V an optional bit string Text1, and a purported tag MacTag1’. If these values are not
received, output ‘invalid’ and stop.
Text1 = ε (the empty string);

MacTag1’ = E6 C3 DE 1F E8 63 15 B9 E6 A0 2B 44 FF 63 D8 D0.

4. Verify that QEV’ is a valid challenge for the challenge domain parameters D as specified in sub-clause
B.3.2. If the validation primitive rejects the challenge, output ‘invalid’ and stop.

5. Use the SKG primitive in clause B.5 to derive a shared secret bit string Z from the challenges Q1=QEU
owned by U and Q2=QEV’ owned by V, using as key the shared key Key. If the SKG primitive outputs
‘invalid’, output ‘invalid’ and stop.

a) Form the bit string MACData = U || V || QEU || QEV’:
MACData = 55 73 65 72 20 55 0D 0A || 55 73 65 72 20 56 0D 0A ||

9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96 ||
BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53.

ZigBee Specification, Annex C

338 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

b) Calculate the MACTag for MACData under the key Key using the tagging transformation of the
HMAC-Matyas-Meyer-Oseas MAC scheme:
MACTag=MACKey(MACData)= 78 7C DE F6 80 13 12 CD 41 1B CD 62 14

91 F8 6D.

c) Set Z=MACTag:
Z = 78 7C DE F6 80 13 12 CD 41 1B CD 62 14 91 F8 6D.

6. Use the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7] with the Matyas-Meyer-
Oseas hash function to derive keying data KKeyData of length 256 bits from the shared secret value Z
and the shared data SharedData:

a) The hash values Hash1, Hash2 are computed as follows:

b) Set KKeyData=Hash1 || Hash2:
KKeyData = E4 D4 5F 76 2A 36 B7 99 F9 5E C2 C6 FD E9 A1 50 ||

 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E A3 7F.

7. Parse the leftmost 128 bits of KKeyData as a MAC key MacKey and the remaining bits as keying data
KeyData.

MacKey = E4 D4 5F 76 2A 36 B7 99 F9 5E C2 C6 FD E9 A1 50;

KeyData = 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E A3 7F.

8. Form the bit string MacData1 = 0216 || V || U || QEV’ || QEU || [Text1]:

MacData1 = 02 || 55 73 65 72 20 56 0D 0A || 55 73 65 72 20 55 0D 0A ||
BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53 ||
9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96.

9. Verify that MacTag1’ is the tag for MacData1 under the key MacKey using the tag checking
transformation specified in Section 5.7.2 of ANSI X9.63-2001 [B7]. If the tag checking transformation
outputs ‘invalid’, output ‘invalid’ and stop.

a) Calculate MacTag1=MACMacKe y (MacData1) = E6 C3 DE 1F E8 63 15 B9 E6 A0 2B 44 FF 63 D8
D0.

b) Verify that MacTag1=MacTag1’.

10. Form the bit string MacData2 = 0316 || U || V || QEU || QEV’ || [Text2]:

MacData2 = 03 || 55 73 65 72 20 55 0D 0A || 55 73 65 72 20 56 0D 0A ||
9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96 ||
BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53.

11. Calculate the tag MacTag2 on MacData2 under the key MacKey using the tagging transformation
specified in Section 5.7.1 of ANSI X9.63-2001 [B7] with the HMAC-Matyas-Meyer-Oseas MAC
scheme:

MacTag2 = MACMacKey (MacData2) = 66 36 8D 61 0F E0 0B 7F 06 3E 74 C4 78 0A A3 6D. (22)

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send MacTag2 and, if present,
Text2 to V.

i Hashi=H(Xi) Xi

1 E4 D4 5F 76 2A 36 B7 99 F9 5E C2 C6 FD
E9 A1 50

78 7C DE F6 80 13 12 CD 41 1B CD 62 14 91 F8
6D || 00 00 00 01 || D0 D1 D2 D3 D4 D5

2 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5
6E A3 7F

78 7C DE F6 80 13 12 CD 41 1B CD 62 14 91 F8
6D || 00 00 00 02 || D0 D1 D2 D3 D4 D5

Test Vectors for Cryptographic Building Blocks

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 339

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Output: output ‘valid’ and accept the 128-bit string KeyData = 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E
A3 7F as the keying data shared with V.

C.8.2 Responder Transformation

V obtains an authentic copy of U’s identifier and an authentic copy of the static secret key Key shared with
U.

Input: The input to the responder transformation is:

1. A challenge QEU’ purportedly owned by U.
QEU’ = 9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96.

2. The length keydatalen in bits of the keying data to be generated: keydatalen=128.

3. The optional bit string Text1 to be used is not present, i.e., Text1 = ε (the empty string).

Actions: V derives keying data as follows:

1. Verify that QEU’ is a valid challenge for the challenge domain parameters D as specified in sub-clause
B.3.2. If the validation primitive rejects the challenge, output ‘invalid’ and stop.

2. Use the challenge generation primitive in Section 5.3 of ANSI X9.63-2001 [B7] to generate a challenge
QEV for the challenge domain parameters D. Send to U the challenge QEV.
QEV = BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53.

3. Use the SKG primitive in clause B.5 to derive a shared secret bit string Z from the challenges Q1=QEU’
owned by U and Q2=QEV owned by V, using as key the shared key SharedKey. If the SKG primitive
outputs ‘invalid’, output ‘invalid’ and stop.

a) Form the bit string MACData=U || V || QEU’ || QEV:

MACData= 55 73 65 72 20 55 0D 0A || 55 73 65 72 20 56 0D 0A ||
9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96 ||
BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53.

b) Calculate the MACTag for MACData under the key Key using the tagging transformation of the
HMAC-Matyas-Meyer-Oseas MAC scheme:
MACTag = MACKey (MACData) = 78 7C DE F6 80 13 12 CD 41 1B CD 62 14

91 F8 6D.

c) Set Z=MACTag:
Z = 78 7C DE F6 80 13 12 CD 41 1B CD 62 14 91 F8 6D.

4. Use the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7] with the Matyas-Meyer-
Oseas hash function to derive keying data KKeyData of length 256 bits from the shared secret value Z
and the shared data SharedData:

a) The hash values Hash1, Hash2 are computed as follows:

b) Set KKeyData=Hash1 || Hash2:

i Hashi=H(Xi) Xi

1 E4 D4 5F 76 2A 36 B7 99 F9 5E C2 C6 FD E9
A1 50

78 7C DE F6 80 13 12 CD 41 1B CD 62 14 91 F8
6D || 00 00 00 01 || D0 D1 D2 D3 D4 D5

2 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E
A3 7F

78 7C DE F6 80 13 12 CD 41 1B CD 62 14 91 F8
6D || 00 00 00 02 || D0 D1 D2 D3 D4 D5

ZigBee Specification, Annex C

340 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

KKeyData = E4 D4 5F 76 2A 36 B7 99 F9 5E C2 C6 FD E9 A1 50 ||
 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E A3 7F.

5. Parse the leftmost 128 bits of KKeyData as a MAC key MacKey and the remaining bits as keying data
KeyData.

MacKey = E4 D4 5F 76 2A 36 B7 99 F9 5E C2 C6 FD E9 A1 50;

KeyData = 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E A3 7F.

6. Form the bit string MacData1 = 0216 || V || U || QEV || QEU’ || [Text1]:

MacData1 = 02 || 55 73 65 72 20 56 0D 0A || 55 73 65 72 20 55 0D 0A ||
BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53 ||
9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96.

7. Calculate the tag MacTag1 for MacData1 under the key MacKey using the tagging transformation
specified in Section 5.7 of ANSI X9.63-2001 [B7] with the HMAC-Matyas-Meyer-Oseas MAC
scheme:

MacTag1 = MACMacKey(MacData1)= E6 C3 DE 1F E8 63 15 B9 E6 A0 2B 44
 63 D8 D0.

8. If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send to U, if present the bit
string Text1, and MacTag1.

9. Then receive from U an optional bit string Text2 and a purported tag MacTag2’. If this data is not
received, output ‘invalid’ and stop.

Text2 = ε (the empty string);

MacTag2’ = 66 36 8D 61 0F E0 0B 7F 06 3E 74 C4 78 0A A3 6D.

10. Form the bit string MacData2 = 0316 || U || V || QEU’ || QEV || [Text2]:

MacData2 = 03 || 55 73 65 72 20 55 0D 0A || 55 73 65 72 20 56 0D 0A ||
 9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96 ||
 BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53.

11. Verify that MacTag2’ is the valid tag on MacData2 under the key MacKey using the tag checking
transformation specified in Section 5.7 ANSI X9.63-2001 [B7]. If the tag checking transformation
outputs ‘invalid’, output ‘invalid’ and stop.

a) Calculate MacTag2=MACMacKey (MacData2) = 66 36 8D 61 0F E0 0B 7F 06 3E 74 C4 78 0A A3
6D.

b) Verify that MacTag2=MacTag2’.

Output: output ‘valid’ and accept the 128-bit string KeyData = 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E
A3 7F as the keying data shared with U.

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 341

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex D ZigBee Protocol Stack, Settable Values
(Knobs)
This white paper details the settable parameters within the ZigBee protocol stack.

The goal of this document is to list the various settings that need to be chosen so that differing ZigBee
implementations and networks will be able to interoperate. Along with the specific “knobs”/settings a
description and potential “cost” be that volatile or non-volatile memory, network constraints or other costs.

These settings fall into three major categories: Network settings, Application Settings, and Security Settings.
Each will be covered in a separate section.

D.1 Network Settings

The settable parameters for the Network Layer include:

— nwkMaxDepth and nwkMaxChildren

— nwkMaxRouters

— Size of the routing table

— Size of neighbor table

— Size of route discovery table

— Number of reserved routing table entries

— How many packets to buffer pending route discovery

— How many packets to buffer on behalf of end devices

— Routing cost calculation

— nwkSymLink

D.1.1 nwkMaxDepth and nwkMaxChildren

D.1.1.1 Description

The network formation procedure in ZigBee naturally forms trees of association starting with the ZigBee
coordinator. In star mode, of course, the tree is a degenerate one with unit depth but tree and mesh mode
allow for deeper trees. The NWK Information Base (NIB) attribute nwkMaxDepth specifies the maximum
number of allowable levels in a particular tree and the attribute nwkMaxChildren specifies the maximum
number of children that any node in the tree may have. By convention, values for these NIB attributes are
chosen by the ZigBee coordinator at network startup and shared by all devices in the network.

The network diameter, which is the maximum number of hops a packet will have to travel to reach any other
device in the network, is just 2*nwkMaxDepth, while the total address block size, assuming that all the
children are routers, which is given by:

must be less than or equal to the size of the address space. See sub-clause D.1.2 for a discussion of
nwkMaxRouters and of networks containing ZigBee end devices.

1 − nwkMaxChildrenn wkM a xDepth+1

1− nwkMaxChildren

ZigBee Specification, Annex D

342 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.1.1.2 Cost impact

D.1.1.3 Value range

Network sizes given here assume a total address space of 4K addresses corresponding to a 16-bit address
word with 4 reserved bits and further assume that all devices are ZigBee routers.

D.1.2 NwkMaxRouters

D.1.2.1 Description

The NIB attribute nwkMaxRouters may be used to limit the number of ZigBee routers that a ZigBee router
or ZigBee coordinator may take on as children thereby permitting a degree of control over the ratio of
ZigBee routers to Zigbee end devices. Like nwkMaxDepth and nwkMaxChildren its value is assigned by the
ZigBee coordinator at network startup time and distributed to all other devices in the network.

Cost Item Impact (High/Medium/Low)

Network size. High – As a network grows, the amount of address space that is allocated at
each level is exponential over nwkMaxChildren. Thus a large nwkMaxChil-
dren will rapidly deplete whatever address space is available. Conversely, a
“rangy” network with a large diameter must have a relatively small value for
nwkMaxChildren.

Device cost. The chosen values of nwkMaxChildren and nwkMaxDepth may affect device
cost in two ways.

High – A device must have enough RAM to store a neighbor table entry for
each of its children and its parent. Large values for nwkMaxChildren will
mandate large neighbor tables.
Medium – Network designers may wish to maintain a high ratio of inexpen-
sive end devices to routers in order keep total installation cost low. This, in
turn, mandates a large value for nwkMaxChildren.

NwkMaxDepth 2…7

NwkMaxChildren 1…32

Value Setting Tradeoff

“rangy” network
{nwkMaxChildren = 3, nwkMaxDepth = 7}

Network diameter = 14
Maximum devices in network = 3280
Neighbor table entries per router = 4

Nominal network
{nwkMaxChildren = 15, nwkMaxDepth = 3}

Network diameter = 6
Maximum devices in network = 3616
Neighbor table entries per router = 16

“bushy” network
{nwkMaxChildren = 32, nwkMaxDepth = 2}

Network diameter = 4
Maximum devices in network = 1057
Neighbor table entries per router = 33

ZigBee Protocol Stack, Settable Values (Knobs)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 343

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.1.2.2 Cost impact

D.1.2.3 Value range

The values in the following table the effect of varying nwkMaxRouters in what might be considered a
typical home control network – nwkMaxChildren = 20, nwkMaxDepth = 4. In each case, the value for end
devices per router holds for routers in the “middle” of the tree. All leaf nodes may be end devices if so
desired.

The values in the table below are comparable values for wider-ranging network that might be used in
building control {nwkMaxChildren = 22, nwkMaxDepth = 5}.

Cost Item Impact (High/Medium/Low)

Network coverage, Medium – Routers are needed to move traffic around the network. End
devices, by definition, perform no routing. Thus, in order to assure that traf-
fic is able to move around the network and to prevent communications bot-
tlenecks, the largest possible value for nwkMaxRouters should be used.

Total installation cost. High – It is presumed that ZigBee routers will be more expensive than Zig-
Bee end devices. One way to control the total cost of an installation is to
make as many of the devices in a network as possible, end devices.

Power consumption. High – ZigBee routers are generally presumed to be mains-powered
devices. In fact, ZigBee supports beacon-enabled routers and, for some
applications, this may be enough to allow battery-powered routers as well,
but, certainly for the residential and commercial building control application
areas, routers will be mains-powered. End devices, on the other hand, may
be battery powered and so, if the application calls for a device to be battery
powered, it will most likely be an end device.

NwkMaxRouters 1-32

Value Setting Tradeoff

4 Maximum devices in network = 1701
End devices per router = 16

6 Maximum devices in network = 5181
End devices per router = 14

8 Maximum devices in network = 11701
End devices per router = 12

ZigBee Specification, Annex D

344 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.1.3 Size of routing table

D.1.3.1 Description

ZigBeeevices may set aside storage for routing entries that record the next hop in the multi-hop chain
required to deliver a packet to a particular destination. The minimum required information to be stored in
routing tables, as described in the current version of the specification, is as follows:

In estimating the size of the entries we can a 5-byte entry.

D.1.3.2 Cost impact

D.1.3.3 Value range

Value Setting Tradeoff

4 Maximum devices in network = 7503
End devices per router = 18

6 Maximum devices in network = 34211
End devices per router = 16

7 Maximum devices in network = 61623
End devices per router = 15

Field Name Size Description

Destination address 2 bytes The 16-bit network address of this route.

Status 3 bits The status of the route. See sub-clause D.1.3.3 for values.

Next-hop address 2 bytes The 16-bit network address of the next hop on the way to the des-
tination.

Cost Item Impact (High/Medium/Low)

Device cost. Medium – Every routing table entry adds 5 bytes of RAM to the ZigBee device.

Routing optimality. Low – A small number of routing entries will result in a greater preponderance
of tree routing. The routes chosen in this way may require more hops and
therefore generate more traffic than the tree routes that would be used if
devices had room for them.

Network reliability. Medium – Tree routes have no choice but to use tree links and are therefore
more liable to fail in the case of a flaky or asymmetrical tree link. Mesh routes
should be more robust since they have the opportunity to pick the best avail-
able links and apply LQI measurement to improve their performance over time.

Routing Table Size 0…Unspecified Maximum.

ZigBee Protocol Stack, Settable Values (Knobs)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 345

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.1.4 Size of neighbor table

D.1.4.1 Description

The neighbor table is used for keeping track of a device’s neighbors in the network. There are several classes
of neighbor table entry that may be used by implementers for this task.

— Every device must keep track of its children in the tree and its parent. It may want to track the link
quality of packets received from each to support routing cost calculation.

— A device may keep track of neighbors from which it has received or may receive route requests. It
may also track LQI for packets received from each of these neighbors.

— When a device joins (or forms) a network it performs a sequence of scans and the data from these
scans must be stored, at least temporarily, while it evaluates which network to join and so on.

In a practical implementation, the information stored here may be stored in a single table or multiple tables
at the implementer’s discretion. A rough size for each of these types of table entry follows:

Notes that these are minimum numbers. Implementers may choose to store more information about a
device’s neighbors, e.g. a timestamp recording when how recently the device has been heard from.

The discussion here will center on permanent storage only.

D.1.4.2 Cost impact

Value Setting Tradeoff

0 (minimum) 0 bytes of RAM This minimum value may be sufficient for networks where the
placement of routers is flexible enough that the resulting tree routes may be tuned
for optimal performance and the traffic load is low enough that bottlenecks are not
likely to develop near the ZigBee coordinator.

32 (typical) 160 bytes of RAM. This is a number that will probably suffice for Resi-Light-Comm
installations with localized control.

Entry Size in bytes

Parent/Child. 11 bytes without LQI.
12 bytes with LQI.

Routing neighbor. 2 bytes without LQI.
3 bytes with LQI.

Temporary entry during startup and joining. 15 bytes.

Cost Item Impact (High/Medium/Low)

Device cost. Medium – Every neighbor table entry requires a fixed amount of RAM
depending on its type as described above. The number of entries for storing
parents and children is not completely at the discretion of the developer since
it is equal to nwkMaxChildren + 1. An implementer may set aside any number
of 3-byte entries for additional neighbors to be used in routing.

ZigBee Specification, Annex D

346 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.1.4.3 Value range

D.1.5 Size of route discovery table

D.1.5.1 Description

The route discovery table is used to temporarily store information that is needed during route discovery. The
contents of the route discovery table, as excerpted from the most recent version of the specification are:

Minor changes may occur in the definition table during the next few revisions of the specification but it will
stay at roughly this size, i.e. around 10 bytes per entry.

Entries in this table are only valid during route discovery and may be reused.

Neighbor Table Size NwkMaxChildren + 1 entries for children/parent.

[0… Unspecified Maximum] entries for other neighbors.

Value Setting Tradeoff

Sample minimum for nwkMaxChildren = 15 192 bytes of RAM including LQI values.

nwkMaxChildren = 15, 16 additional neighbors 240 bytes of RAM including LQI values.

Field Name Size Description

Route request ID 1 byte A sequence number for a route request command frame that is incre-
mented each time a device initiates a route request.

Source address 2 bytes The 16-bit network address of the route request’s initiator.

Sender address

2 bytes

The 16-bit network address of the node that has sent the most recent low-
est cost route request command frame corresponding to this entry’s Route
request ID and Source address. This field is used to determine the path
that an eventual route reply command frame should follow

Residual Cost 1 byte The accumulated path cost from source of the route request to the current
device

Forward routing
cost 1 byte The accumulated path cost from the current device to the destination

device

Path cost 1 byte The accumulated PCM value

Expiration time 2 bytes A countdown timer indicating the number of milliseconds until route discov-
ery expires. The initial value is nwkcRouteDiscoveryTime.

ZigBee Protocol Stack, Settable Values (Knobs)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 347

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.1.5.2 Cost impact

D.1.5.3 Value range

D.1.6 Number of reserved routing table entries

D.1.6.1 Description

A device may set aside some number of routing table entries to be used in the “dire” case where a route is
broken and the device that wants to repair it has no routing capacity to do so. This is most likely to happen
when the link is a parent-child link.

D.1.6.2 Cost impact

D.1.6.3 Value range

Cost Item Impact (High/Medium/Low)

Device cost. Low – Every route discovery table entry takes up about 10 bytes of RAM.

Route Discovery Table Size 1…Unspecified Maximum

Value Setting Tradeoff

1 (minimum) 10 bytes of RAM. The device may only process one route discovery at a time
and some routes will not be discovered.

8 (recommended) 80 bytes of RAM. This is enough to handle 8 route discoveries at once and
should be enough for most networks. More testing should be performed to
fine-tune this number.

Cost Item Impact (High/Medium/Low)

Device cost. Low – As with the standard routing table, every reserved entry takes up
about 5 bytes of RAM.

Network reliability. High – For tree networks and mesh networks containing a large num-
ber of devices with small routing capacity, having a small repair table
may spell the difference between having a portion of the network
become available due to a broken tree link and being able to repair
around that link.

Repair Table Size 0…Unspecified Maximum

ZigBee Specification, Annex D

348 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.1.7 Buffering pending route discovery

D.1.7.1 Description

An RN+ may choose to buffer a frame pending route discovery or it may relay it directly along the tree and,
preferably after a short delay, initiate route discovery.

D.1.7.2 Cost impact

D.1.7.3 Value range

Value Setting Tradeoff

0 (minimum) With no repair table, a device will not be able to participate in tree repair
and, if one of its forward links breaks, network partition may result.

1 5 bytes of RAM. This is enough to repair a single route across a single
broken link and may be sufficient in some cases.

8 (recommended) 40 bytes of RAM More testing is require to fine tune this number.

Cost Item Impact (High/Medium/Low)

Device cost. High– Each frame buffered may take up
as much as the standard ZigBee pay-
load size (TBD) plus the network
header. This may be on the order of 100
bytes per frame.

Network reliability. Low – Frames relayed in this way stand
a slightly larger chance of being
dropped in transit due to bad tree links
or interference from route discovery traf-
fic.

Number of frames buffered 0…Unspecified Maximum

Value Setting Tradeoff

0 (minimum) With no buffering, all frames are relayed along the tree before route
discovery is initiated.

2 (suggested maximum for 8-bit
implementations)

Most 8-bit processors with a RAM complement of 2-4K will not be able
to afford more than 200 bytes of buffering for this purpose.

ZigBee Protocol Stack, Settable Values (Knobs)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 349

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.1.8 Buffering on behalf of end devices

D.1.8.1 Description

A ZigBee coordinator or ZigBee router may choose to buffer broadcast frames on behalf of sleeping end
devices to be transmitted in response to a later data request or a poll request. The alternative is to leave the
responsibility of relaying broadcasts to end devices to the application.

D.1.8.2 Cost impact

D.1.8.3 Value range

D.1.9 Routing cost calculation

D.1.9.1 Description

In order to allow the comparison of possible routes, ZigBee routers are required to add a link cost value to
the path cost field of route request and route reply command frames. Implementers are allowed wide latitude
with regard to the technique for producing this link cost value. They may actual opt out and report a fixed
value (TBD) or they may use instantaneous LQI, an LQI value that has been averaged over time or, in fact,
any other scheme to derive the probability that a packet will be delivered over the link in question. The link
cost, then should be the reciprocal of that probability.

Cost Item Impact (High/Medium/Low)

Device cost. High– Each frame buffered may take up
as much as the standard ZigBee pay-
load size (TBD) plus the network
header. This may be on the order of 100
bytes per frame.

Number of frames buffered 0…Unspecified Maximum

Value Setting Tradeoff

0 (minimum) With no buffering, broadcasts to end
devices must be relayed by the appli-
cation. Another way of saying this is
that routers and coordinators must act
as proxies for sleeping end devices at
the application layer.

2 (suggested maximum for 8-bit implementations) Again, most 8-bit processors with a
RAM complement of 2-4K will not be
able to afford more than 200 bytes of
buffering for this purpose. In this case,
two broadcasts may be held until they
are delivered to all sleeping children.

ZigBee Specification, Annex D

350 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.1.9.2 Cost impact

D.1.9.3 Value range

D.1.10 nwkSymLink

D.1.10.1 Description

In most network environments, we can assume that some percentage of the links presented to any given
device in the network will be asymmetrical in the sense that the link quality to be had by communicating in
one direction will differ, often substantially, from the link quality in the other direction. The reasons for this
are unsurprising and have to do with the physical characteristics of the wireless medium as well as with the
characteristics of the devices being employed. In the case where link symmetry can, for the most part, be

Cost Item Impact (High/Medium/Low)

Device cost. Low – A device that calculates link cost
must perform a simple computation for
each packet received and store the
result in the neighbor table entry corre-
sponding to the sender of that packet. It
must also use table-lookup or some
other method to derive a link cost from
that value at route discovery time. The
example table in the specification for
this purpose is 8 bytes long.

Network reliability. High – The primary reason to rate link
quality is that it protects the routing algo-
rithm from choosing unreliable routes
that are shorter over reliable routes that
happen to be longer and it gives the
algorithm a rationale for choosing
between multiple paths of the same
length some of which may be more reli-
able than others.

Calculate link cost YES or NO

Value Setting Tradeoff

Yes A device may rate the quality of a link
and that rating may improve over time
so that routing choices reflect the oper-
ational conditions of the network.

No A device can neither rate link reliability
or improve its rating over time. In a net-
work where all devices use this tech-
nique the probability that flaky,
unreliable and expensive routes will be
chosen is greatly increased.

ZigBee Protocol Stack, Settable Values (Knobs)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 351

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

assumed, an optimization becomes available whereby the forward and reverse path of a route can be
established at the same time. The nkSymLink NIB attribute determines whether this assumption, and the
resulting optimization are made during route discovery.

D.1.10.2 Cost Impact

D.1.10.3 Value Range

D.2 Application Settings

The settable parameters for the Application Layer include:

Cost Item Impact (High/Medium/Low)

Network traffic load Medium – The traffic load on a network
that is performing route discovery is
substantial. This traffic may cause regu-
lar data traffic in transit at the same time
to be lost. A mitigating factor is that the
bulk of route establishment operations
will happen at network startup or at
times when the network restarts due to
wide-area failures.

Network reliability High – Erroneous assumptions about
link symmetry can have disastrous
results since it may cause the establish-
ment of unviable routes, which may be
impossible to repair since forward and
reverse route discovery will always be
performed together but link quality will
only be measured in the forward direc-
tion.

nwkSymLink TRUE or FALSE

Value Setting Tradeoff

TRUE A device may assume link symmetry
and perform forwards and backwards
route discovery at the same time, at the
risk of establishing unusable routes.

FALSE A device must perform forward and
reverse route discovery separately
thereby loading the network with more
discovery traffic in the case where
routes are needed in both directions
but both routes are much more likely to
be viable in the presence of asymmet-
ric links

ZigBee Specification, Annex D

352 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

— Logical device type

— Stack profile and beacon payload parameters

— Number of active endpoints per device (maximum)

— Discovery information cache size (minimum)

— Binding table size (minimum)

— End to end response messaging

— Acknowledged service in APS

D.2.0.1 Logical device type

D.2.0.2 Description

ZigBee coordinator – Device will scan to find an unused channel and start a new network.

ZigBee router – Device will scan to find an existing network and join as a router

ZigBee end device – Device will scan to find an existing network and join as an end device.

D.2.0.3 Cost impact

D.2.0.4 Value Range

Cost Item Impact (High/Medium/Low)

ZigBee coordinator High – Designating a specific device to be the ZigBee coordinator places
a requirement on system deployment to install a special device in the net-
work capable of starting the network. Additionally, the ZigBee coordinator
must have resources for a binding table and trust center (if security is
used). The amount of resources allocated must match the expected size
of the network it serves (including growth).

ZigBee router High – To provide mesh routing, ZigBee routers must be deployed such
that at least one has connectivity to the ZigBee coordinator and there is
continuous connectivity from router to router to the edge of the network.
This implies a set of installation and deployment requirements tied to logi-
cal device type. Each ZigBee router must contain network routing soft-
ware and some resource allocation for routing tables or tree repair tables.

ZigBee end device Low – Each ZigBee end device may be minimally configured as long as
provisions have been made above for the ZigBee coordinator and routers.

Logical Device Type Coordinator, router or end device

ZigBee Protocol Stack, Settable Values (Knobs)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 353

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.2.0.5 Stack profile and beacon payload parameters

D.2.0.6 Description

This setting is applicable to all ZigBee devices. The application will have some desired network settings
provided as configuration settings to ZDO. These settings will either be used to configure the network to be
created (ZigBee coordinator) or will be used to select a network to join (ZigBee router and end device).
These parameters will be established by the specific needs of the Profile or Profiles supported in the device.
For devices with multiple applications running on different endpoints, there must be agreement on a single
stack profile and set of network settings. The following parameters are settable:

— Stack Profile – Network Specific, Home Controls, Building Automation or Plant Control

— NwkcProtocolVersion – Specifies the ZigBee protocol version. The rules for joining (or not joining)
networks with specific Protocol Versions will be established in later versions of this specification.

— NwkSecurityLevel – Specifies the security level of the network.

Value Setting Tradeoff

ZigBee coordinator Need at least 1

ZigBee router Need to deploy such that entire network spans no more than
nwkMaxDepth

ZigBee end device Need to deploy in such a way that all ZigBee end devices are
serviced by some router out to nwkMaxDepth.

ZigBee Specification, Annex D

354 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.2.0.7 Cost impact

D.2.0.8 Value Range

Cost Item Impact (High/Medium/Low)

Stack Profile of Network Specific High – For devices employing network
specific stack profiles or wanting to join
networks advertised as network specific,
the device must first join the network to
determine whether parameters not adver-
tised in the beacon payload are operation-
ally acceptable. Parameters such as the
(minimum) size of the neighbor table, (min-
imum) size of the route discovery table,
etc. are key to a fully interoperable net-
work.

NwkcProtocolVersion Low – For now, this is a benign parameter
value. If it is needed in later versions, it
could become a parameter with very high
cost (for example, if v1.1 features are
defined such that they are not compatible
with v1.0).

NwkSecurityLevel High - This parameter has values from 0x0
(security off) to 0x7 (highest security).
Each of the security levels applies to each
of the stack profiles. If application profiles
are written such that they require a specific
security level, then we will end up with
another dimension on the stack profile that
will complicate interoperability.

Stack Profile Network Specific – 0x0
Home Controls – 0x1
Building Automation – 0x2
Plant Control – 0x3

NwkSecurityLevel Security off – 0x0
Security level – 0x1 – 0x7

ZigBee Protocol Stack, Settable Values (Knobs)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 355

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.2.0.9 Number of active endpoints per device (maximum)

D.2.0.10 Description

Each endpoint needs a descriptor/description for use with Service Discovery. These descriptors can be up to
Zigbee network payload size. For any sleeping devices the coordinator must cache these values so it can act
as a proxy for Service Discovery.

Value Setting Tradeoff

Stack Profile Selection of a single stack profile, assum-
ing there are a small number of stack pro-
files, greatly simplifies network selection
and aids in interoperability. If, however,
stack profiles proliferate and are used as
multiple variations on stack parameter set-
tings, then the same interoperability con-
cerns will surface which led to creation of
stack profiles to begin with.

Stack Profile of Network Specific This parameter setting should really only
be selected for closed networks. Use of
this parameter for networks where interop-
erability is desired will result in complex
join procedures where devices must deter-
mine if the network settings can support
their applications.

NwkSecurityLevel Rules must be established on how this
parameter is used. For example, suppose
a Home Controls stack profile specifies
nwkSecurityLevel of 0x3 (vs. 0x4 wanted
by a prospective joining device). The nwk-
SecurityLevel should not be permitted to
become another dimension on the stack
profile (else, the security level should
become a setting WITHIN the stack profile
and not a separate parameter).

ZigBee Specification, Annex D

356 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.2.0.11 Cost impact

D.2.0.12 Value Range

D.2.0.13 Discovery Information Cache Size

D.2.0.14 Description

Each device holds the following descriptors:

— Node Descriptor – 6 bytes (mandatory)

— Power Descriptor – 2 bytes (mandatory)

— Simple Descriptor – variable, one per active endpoint/interface (mandatory)

— Complex Descriptor – variable (optional)

— User Descriptor – variable (optional).

For each end device that intends to sleep, the ZigBee coordinator or router it associates to must cache the
above information for the device and respond to service discovery. In addition to the nwkMaxChildren and
nwkMaxRouters parameters, this cache size must be considered when permitting a device to associate.

Cost Item Impact (High/Medium/Low)

Non-volitile memory on end device to store description for
each interface

High – Each endpoint must have a Simple
Descriptor. Worst case, the Simple
Descriptor can be as large as a single Zig-
Bee application packet (64 bytes with
security). With a maximum 240 endpoints/
interfaces * 64 bytes this is a storage
requirement of 15.360 bytes!

Non-volitile or volitile memory on coordinator to be able to
cache descriptors for each “child” device and each interface
on each child

High – Each coordinator/router can have
nwkMaxChildren. If they all wanted to
sleep, they would want their coordinator/
router to cache their service discovery
information. This would include a Node
Descriptor, Power Descriptor for each
device plus as many Simple Descriptors as
each device had for every active endpoint
(see above item – this is a very substantial
number).

Number of endpoints/interfaces per device 1-240

Value Setting Tradeoff

1 (minimum)

2? (typical)

240 (maximum)

ZigBee Protocol Stack, Settable Values (Knobs)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 357

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.2.0.15 Cost impact

D.2.0.16 Value Range

D.2.0.17 Binding Table Size

D.2.0.18 Description

The Binding Table is held by the ZigBee coordinator and contains entries with the following information:

— Source address (64 bits)

— Source endpoint/interface (8 bits)

— Cluster ID (8 bits)

— Destination address (64 bits)

— Destination endpoint/interface (8 bits)

The above information is provided per entry. The number of entries is a function of the number of devices in
the network and the number of expected bindings per device.

Cost Item Impact (High/Medium/Low)

Cache size High – Though nwkMaxChildren may indi-
cate that a given router or coordinator
could support additional children, the size
of the cache available to support sleeping
devices along with the application require-
ments of the sleeping device must be con-
sidered.

Discovery Information cache size

Value Setting Tradeoff

? Need to establish values for this parame-
ter. Currently, there is no indication from a
joining device as to the number and size of
Simple Descriptors they support.

ZigBee Specification, Annex D

358 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.2.0.19 Cost impact

D.2.0.20 Value Range

D.2.0.21 End to End Response Messaging

D.2.0.22 Description

According to the Application Framework, response messaging is optional. It would appear to be perfectly
legal to define all messaging within a given application as not requiring responses. In fact, given that the
NWK layer is non-guaranteed delivery, it would not be possible to determine if the application was
successfully sending any messages to its intended destination.

Cost Item Impact (High/Medium/Low)

Binding Table Size High – Assume a network of 400 devices,
what assumptions are required to set an
appropriate binding table size? The size is
a function of the devices in the network
and the application needs of those
devices. For example, a sensor application
may use 0 Binding Table entries. A Light-
ing solution may have 1 entry per device.
In some extreme cases (like theatre light-
ing), there may be multiples of Binding
Table entries per device (if a given set of
lights were controlled by multiples of
switches).

Number of pairings the binding coordinator can
hold

Value Setting Tradeoff

0 (minimum) Devices requiring Binding Table support
should not join this type of network.

1 per network device? (typical) It must be known if this type of Binding
Table size can support the needs of the
application on the device joining the net-
work.

? (maximum) For some specialized applications, the
Binding Table size may need to be larger
than 1 per device on the network.

ZigBee Protocol Stack, Settable Values (Knobs)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 359

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.2.0.23 Cost impact

D.2.0.24 Value Range

D.2.0.25 Acknowledged Service in APS

D.2.0.26 Description

An acknowledged service was added to APS. This optional service is required in cases such as replies to
broadcast service or device discovery commands, however, may be employed for other application
messaging under application control.

Cost Item Impact (High/Medium/Low)

End to end messaging on all requests High – Each application would be respon-
sible for creating a timer to ensure that
response messages are received for every
command. A retry mechanism would need
to be instituted for messages that are not
acknowledged along with error handling in
cases where the retry limit is exceeded.

End to end messaging on some requests Medium – The application could utilize
APS level acknowledgement that provides
assurance that messages are being
received at the destination, then use non-
guaranteed delivery for intervening com-
mands. Use of this feature would depend
on the application nature of the commands
being sent and the relative importance on
the destination receiving all commands
reliably (ie. Whether the message is
repeated like a measurement or whether it
is a control command)

End to End Response Messaging

Value Setting Tradeoff

End to end application messaging used at all times Application must implement timeouts and
retries. Application must handle error con-
ditions when retry limits are exceeded.

End to end application messaging is used periodically Application must still implement timeouts
and handle error conditions. Additionally,
application must assume that failures of
application commands/responses are also
occurring and be designed to be immune
from such failure.

End to end application messaging is not used. Application has no feedback that any mes-
sages sent are received at the destination.

ZigBee Specification, Annex D

360 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.2.0.27 Cost impact

D.2.0.28 Value Range

D.3 Security Settings

The settable parameters for the Security Services Provider include:

— Security level

— Master key source

— Always use NWK-layer security

— Number of NWK keys

— Number of application keys

— Number of frame counters used

— SecurityTimeoutPeriod

Cost Item Impact (High/Medium/Low)

Acknowledgements on all APS data requests Medium – Each APS data request would
need to receive an acknowledgement. This
could cause a need to either buffer
requests or to discard data requests within
APS (depends on applications communi-
cation requirements)

Acknowledgements on some APS data requests Low – The only required acknowledge-
ments will be for unicast responses to
broadcast requests (such as for the Device
Profile primitives NWK_addr_req and
Match_Desc_req).

Acknowledgements on APS Data Requests

Value Setting Tradeoff

Acknowledgements used at all times Application must implement timeouts and
retries. Application must handle error con-
ditions when retry limits are exceeded.

Acknowledgements are used only for required actions
(NWK_addr_rsp, Match_Desc_rsp and any other unicast
responses to a broadcast device or service discovery
request).

None.

ZigBee Protocol Stack, Settable Values (Knobs)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 361

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.3.0.1 Security level

D.3.0.2 Description

The type of security used by the device (if any).

D.3.0.3 Cost impact

D.3.0.4 Value Range

Cost Item Impact (High/Medium/Low)

NVM if security is used

Security level 0x00-0x07

Value Setting Tradeoff

0x00-none No security; no cost of security

0x01-MIC-32 (32-bit Message Integrity Code) Moderate integrity protection; longer
packet length, NVM key storage needed

0x02-MIC-64 (64-bit Message Integrity Code) Strong integrity protection; longer packet
length, NVM key storage needed

0x03-MIC-128 (128-bit Message Integrity Code) Strongest integrity protection; longest
packet length, NVM key storage needed

0x04-ENC (Encryption only) Message privacy; NVM key storage
needed

0x05-ENC-MIC-32 (Encryption and 32-bit Message Integrity
Code)

Encryption with moderate integrity protec-
tion; longer packet length, NVM key stor-
age needed

0x06-ENC-MIC-64 (Encryption and 64-bit Message Integrity
Code)

Encryption with strong integrity protection;
longer packet length, NVM key storage
needed

0x07-ENC-MIC-128 (Encryption and 128-bit Message Integ-
rity Code)

Encryption with strongest integrity protec-
tion; longer packet length, NVM key stor-
age needed

ZigBee Specification, Annex D

362 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.3.0.5 Master key source

D.3.0.6 Description

The master key for the trust center may come from several places; this affects the behavior of the network
device.

D.3.0.7 Cost impact

D.3.0.8 Value Range

D.3.0.9 Always use Network layer security – on or off

D.3.0.10 Description

Network layer security is needed to prevent theft of network service—“freeloading” devices using the
network to route frames between themselves.

Cost Item Impact (High/Medium/Low)

Factory installation High-difficult to control through distribution
chain

User interface High-effects BoM, product design, user
experience

Master key source Factory installation, installed by network trust center, or
entered by user

Value Setting Tradeoff

Factory installation Easy to use by user, as long as network is
as envisioned by factory; difficult to track
through distribution chain, difficult to add
new devices, difficult to deploy in industrial
settings

Installed by trust center Easy to use by user; onus on ZigBee to
minimize algorithm complexity

Entered by user Flexible, responsive to varied network
designs

ZigBee Protocol Stack, Settable Values (Knobs)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 363

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.3.0.11 Cost impact

D.3.0.12 Value Range

D.3.0.13 Number of NWK Keys

D.3.0.14 Description

The network key is used to secure MAC and NWK-layer frames.

D.3.0.15 Cost impact

D.3.0.16 Value Range

Cost Item Impact (High/Medium/Low)

?

Network layer security ON or OFF

Value Setting Tradeoff

ON No theft of service; longer frames

OFF Shorter frames; possible theft of service

Cost Item Impact (High/Medium/Low)

NVM storage Low

Keys 0, 1, 2

ZigBee Specification, Annex D

364 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.3.0.17 Number of Application Keys

D.3.0.18 Description

Application keys are used to secure end-to-end links.

D.3.0.19 Cost impact

D.3.0.20 Value Range

D.3.0.21 Number of Frame Counters Used

D.3.0.22 Description

A frame counter must be used for each device with which a network node communicates securely.

D.3.0.23 Cost impact

Value Setting Tradeoff

0 No NVM; network not secure

1 Network packets secure; NVM, possible
loss of network function for short period
while key updates

2 Network packets secure, no loss of net-
work function for short period while key
updates; NVM

Cost Item Impact (High/Medium/Low)

NVM storage Medium

Application Keys 0-16?

Value Setting Tradeoff

? The more keys, the more NVM, but the
more flexible and powerful the device.

Cost Item Impact (High/Medium/Low)

NVM storage Medium

ZigBee Protocol Stack, Settable Values (Knobs)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 365

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D.3.0.24 Value Range

D.3.0.25 Security timeout periods

D.3.0.26 Description

— Maximum length of time either an initiator (e.g., a joining device) or a responder (e.g., a beaconing
device) may wait for an expected incoming SKKE message before generating an error code.

— Maximum length of time either an initiator or a responder may wait for an expected incoming mes-
sage in the entity authentication protocol before generating an error code.

Frame counters--RFD 1

Frame counters--FFD 16

Value Setting Tradeoff

1 Low cost; minimal functionality

16 Can communicate securely with 15 chil-
dren plus parent; more NVM

ZigBee Specification, Annex D

366 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 367

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex E ZigBee Stack Profiles
This Annex details the stack profiles for ZigBee protocol stack.

E.1 Stack Profiles

Stack Profiles are a convention on specific ZigBee stack settable values established to provide
interoperability in specified markets. See Annex D for descriptions on the various settings.

The following stack profiles have been identified:

a) Home Controls

b) Building Automation

c) Plant Control

Additionally, a category of stack profile called “Network Specific” is proposed which indicates that no
specific Stack Profile is in use, rather, the stack parameters are defined by the elemental values employed as
stack parameters.

E.2 Stack Profile Definitions

The ZigBee Network (NWK) Specification provides for identification of the Stack Profile within the beacon
payload.

E.3 Home Controls Stack Profile

The Home Controls Stack Profile is intended for use with the Home Controls-Lighting profile and all
profiles written for complementary use with Home Controls-Lighting.

Stack Profile Name Stack Profile Identifier (02130r7)

Network Specific 0x0

Home Controls 0x1

Building Automation 0x2

Plant Control 0x3

Reserved 0x4-0xf

ZigBee Specification, Annex E

368 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

E.3.1 Network Settings

E.3.2 Application Settings

Parameter Name Setting

Beacon Order
Superframe Order

0x0f (no beacon)
0x0f (ignored)

NwkMaxDepth and nwkMaxChildren 5
20

NwkMaxRouters 6

Size of the routing table (minimum) 8

Size of the neighbor table (minimum) ZigBee coordinator: 24
ZigBee router: 25
ZigBee end device: 1

Size of the route discovery table (mini-
mum)

4

Number of reserved routing table entries
(minimum)

8

Number of packets buffered pending route
discovery (minimum)

0

Number of packets buffered on behalf of
end devices (minimum)

1

Routing cost calculation True

NwkSymLink False

Parameter Name Setting

Logical device type ZigBee Coordinator – 1
ZigBee Router – no more than 6 per
coordinator/router to join at the higher
level of the tree
ZigBee End Device – no more than 20
per coordinator/router

Stack profile and beacon payload parame-
ters

Stack profile – 0x1
NwkcProtocolVersion – 0x0
NwkSecurityLevel – 0x5

Number of active endpoints per device
(minimum)

3

Discovery information cache size (mini-
mum, coordinator/routers only, per sleep-
ing child devices)

1036 bytesa

ZigBee v1.0 Stack Profiles

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 369

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

E.3.3 Security Settings

E.4 Building Automation Stack Profile

The Building Automation Stack Profile is intended for use with future profiles targeted to
building automation solutions.

E.4.1 Network Settings

Binding table size (minimum, coordinator
only)

100 entries (1900 bytes)b

End to end response messaging (per clus-
ter/attribute per profile)

Agreed to for each cluster in each profile
within Home Controls.

Acknowledged service in APS Agreed to for each cluster in each profile
within Home Controls.

aAssumptions: nwkMaxChildren of 20 minus nwkMaxRouters of 6 (net of 14),
each with: Node Descriptor – 6 bytes, Power Descriptor – 2 bytes, Simple
Descriptor (3 each, max of 10 input/output clusters per), User Descriptor of 12 =
1036 bytes
bAssumptions: Each Binding Table entry is: Source Address (8 bytes)+Source
Endpoint(1 byte)+ClusterID(1 byte)+Dest Address (8 bytes)+Dest Endpoint (1
byte) = 19 bytes

Parameter Name Setting

Security Level 0x5

Master Key Source Entered by user (includes key pad, but-
ton press, low RF “learn mode” or other
user initiated action)

Always use Network layer security – on or
off

ON

Number of NWK Keys 2

Number of Application Keys 0

Number of Frame Counters used 1 for RFD, 20 for FFD

Security timeout periods 50ms * (2*nwkMaxDepth) + (AES
Encrypt/Decrypt times)

Parameter Name Setting

Beacon Order
Superframe Order

0x0f (no beacon)
0x0f (ignored)

NwkMaxDepth and nwkMaxChildren 9 (2nd choice: 7)
6 (2nd choice: 12)

ZigBee Specification, Annex E

370 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

E.4.2 Application Settings

NwkMaxRouters 3 (2nd choice: 4)

Size of the routing table (minimum) 16

Size of the neighbor table (minimum) ZigBee coordinator: 15
ZigBee router: 16
ZigBee end device: 1

Size of the route discovery table (mini-
mum)

8

Number of reserved routing table entries
(minimum)

8

Number of packets buffered pending route
discovery (minimum)

0

Number of packets buffered on behalf of
end devices (minimum)

1

Routing cost calculation True

NwkSymLink False

Parameter Name Setting

Logical device type ZigBee Coordinator – 1
ZigBee Router – no more than 3 per
coordinator/router to join at the higher
level of the tree
ZigBee End Device – no more than 9 per
coordinator/router

Stack profile and beacon payload parame-
ters

Stack profile – 0x2
NwkcProtocolVersion – 0x0
NwkSecurityLevel – 0x6

Number of active endpoints per device
(minimum)

7

Discovery information cache size (mini-
mum, coordinator/routers only, per sleep-
ing child devices)

588 bytes

Binding table size (minimum, coordinator
only)

50 entries (950 bytes)

End to end response messaging (per clus-
ter/attribute per profile)

Agreed to for each cluster in each profile
within Building Automation.

Acknowledged service in APS Agreed to for each cluster in each profile
within Building Automation.

ZigBee v1.0 Stack Profiles

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 371

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

E.4.3 Security Settings

E.5 Plant Control Stack Profile

Editor’s Note: This section was not reviewed as of Release 1 of the document.

The Plant Control Stack Profile is intended for use with future profiles targeted to plant
control solutions.

E.5.1 Network Settings

Parameter Name Setting

Security Level 0x6

Master Key Source Installed by trust center

Always use Network layer security – on or
off

ON

Number of NWK Keys 2

Number of Application Keys 20

Number of Frame Counters used 1 for RFD, 6 for FFD

Security timeout periods 50ms * (2*nwkMaxDepth) + (AES
Encrypt/Decrypt times)

Parameter Name Setting

Beacon Order
Superframe Order

0x0f (no beacon)
0x0f (ignored)

NwkMaxDepth and nwkMaxChildren 5
22

NwkMaxRouters 7

Size of the routing table (minimum) 16

Size of the neighbor table (minimum) ZigBee coordinator: 30
ZigBee router: 31
ZigBee end device: 1

Size of the route discovery table (mini-
mum)

8

Number of reserved routing
table entries (minimum)

8

Number of packets buffered pending route
discovery (minimum)

0

ZigBee Specification, Annex E

372 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

E.5.2 Application Settings

E.5.3 Security Settings

Number of packets buffered on behalf of
end devices (minimum)

3

Routing cost calculation True

NwkSymLink False

Parameter Name Setting

Logical device type ZigBee Coordinator – 1
ZigBee Router – no more than 7 per
coordinator/router to join at the higher
level of the tree
ZigBee End Device – no more than 22
per coordinator/router

Stack profile and beacon payload parame-
ters

Stack profile – 0x3
NwkcProtocolVersion – 0x0
NwkSecurityLevel – 0x7

Number of active endpoints per device
(minimum)

7

Discovery information cache size (mini-
mum, coordinator/routers only, per sleep-
ing child devices)

2940 bytes

Binding table size (minimum, coordinator
only)

100 entries (1900 bytes)

End to end response messaging (per clus-
ter/attribute per profile)

Agreed to for each cluster in each profile
within Plant Control.

Acknowledged service in APS Agreed to for each cluster in each profile
within Plant Control.

Parameter Name Setting

Security Level 0x6

Master Key Source Installed by trust center

Always use Network layer security – on or
off

ON

Number of NWK Keys 2

Number of Application Keys 23

Number of Frame Counters used 1 for RFD, 22 for FFD

Security timeout periods 50ms * (2*nwkMaxDepth) + (AES
Encrypt/Decrypt times)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 373

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Annex F KVP XML schemas
This annex contains the XML schemas for the ZigBee ZVP commands.

F.1 XML schema for the get command

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.zigbee.org/v1.0/AF" xmlns="http://www.zigbee.org/v1.0/AF"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="GetCommand">
<xs:annotation>

<xs:documentation>Schema for AF get command</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="AttribDataType" type="xs:unsignedByte"/>
<xs:element name="AttribId" type="xs:unsignedShort"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

F.2 XML schema for the get response command

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.zigbee.org/v1.0/AF “xmlns="http://www.zigbee.org/v1.0/AF"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Get_ResponseCommand">
<xs:annotation>

<xs:documentation>Schema for AF get response command</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="AttribDataType" type="xs:unsignedByte"/>
<xs:element name="AttribId" type="xs:unsignedShort"/>
<xs:element name="ErrorCode" type=" xs:unsignedByte "/>
<xs:element name="AttribData" type="xs:anyType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

ZigBee Specification, Annex F

374 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

F.3 XML schema for the set command

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.zigbee.org/v1.0/AF “xmlns="http:/
/www.zigbee.org/v1.0/AF" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="SetCommand">
<xs:annotation>

<xs:documentation>Schema for AF set command</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="AttribDataType" type="xs:unsignedByte"/>
<xs:element name="AttribId" type="xs:unsignedShort"/>
<xs:element name="AttribData" type="xs:anyType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

F.4 XML schema for the set response command

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.zigbee.org/v1.0/AF “xmlns="http:/
/www.zigbee.org/v1.0/AF" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Set_ResponseCommand">
<xs:annotation>

<xs:documentation>Schema for AF set response command</xs:docu-
mentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="AttribDataType" type="xs:unsignedByte"/>
<xs:element name="AttribId" type="xs:unsignedShort"/>
<xs:element name="ErrorCode" type=" xs:unsignedByte "/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

KVP XML schemas

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 375

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

F.5 XML schema for the event command

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.zigbee.org/v1.0/AF “xmlns="http:/
/www.zigbee.org/v1.0/AF" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="EventCommand">
<xs:annotation>

<xs:documentation>Schema for AF event command</xs:documenta-
tion>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="AttribDataType" type="xs:unsignedByte"/>
<xs:element name="AttribId" type="xs:unsignedShort"/>
<xs:element name="AttribData" type="xs:anyType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

F.6 XML schema for the event response command

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.zigbee.org/v1.0/AF “xmlns="http:/
/www.zigbee.org/v1.0/AF" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Event_ResponseCommand">
<xs:annotation>

<xs:documentation>Schema for AF event response command</
xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="AttribDataType" type="xs:unsignedByte"/>
<xs:element name="AttribId" type="xs:unsignedShort"/>
<xs:element name="ErrorCode" type=" xs:unsignedByte "/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

ZigBee Specification, Annex F

376 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

F.7 Example KVP commands

Consider a lighting profile in which a device description for a lamp defines a cluster with an unsigned 8-bit
attribute called “LampOnOff”, which has an identifier of 0x0000. This attribute can be set to either 0x00, to
represent its off state, or 0xff, to represent its on state. In order for a light switch to turn on the lamp, it would
need to send a command to the lamp device such as the set with acknowledgement command illustrated in
Figure 91.

Figure 91 Example of a set with acknowledgement command frame

As the command was a set with acknowledgement command, the lamp responds with the set response
command illustrated in Figure 92.

Figure 92 Example of a set response command frame

The device description for the lamp also defines another cluster with a character string attribute called
“LampMoreInfo”, which has an identifier of 0x0001. In order for a PDA to set this attribute to the 4-
character ASCII character string “3NSF”, it would need to send a command to the lamp device such as the
set command illustrated in Figure 93.

Figure 93 Example of a KVP set command frame

Note that the character string type requires a character length field (equal to 0x04, in this case) as the first
octet of the attribute data and that no acknowledgement is required with this command.

Bits: 8 4 4 16 8

Transaction
sequence
number

Command
type identifier

b3b2b1b0

Attribute data
type

b3b2b1b0

Attribute
identifier Attribute data

0x42 0101 0001 0x0000 0xff

Bits: 8 4 4 16 8

Transaction
sequence
number

Command
type identifier

b3b2b1b0

Attribute data
type

b3b2b1b0

Attribute
identifier Error code

0x42 1001 0001 0x0000 0x00

Bits: 8 4 4 16 8 4

Transaction
sequence
number

Command
type identifier

b3b2b1b0

Attribute data
type

b3b2b1b0

Attribute
identifier Attribute data

0x56 0001 1110 0x0001 0x04 0x334e5346

KVP XML schemas

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 377

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

F.8 Example MSG command

Consider an HVAC profile in which a device description for a cooling fan defines a message to set the fan
speed to a number of settings. To set the fan to its third speed, a remote control device would need to send a
message as illustrated in Figure 94.

Figure 94 Example of an MSG command frame to set the speed of a fan

Consider an agricultural sensor profile in which a device description for a soil moisture sensor defines a
message to configure the relative coordinates of the device using two 16-bit values. To set the coordinates
on the sensor, a configuration device would need to send a message as illustrated in Figure 95.

Figure 95 Example of an MSG command frame to set x and y coordinates of a sensor

Bits: 8 8 8

Transaction
sequence
number

Transaction
length

Transaction
data

0x7d 0x01 0x02

Bits: 8 8 32

Transaction
sequence
number

Transaction
length

Transaction
data

0xe8 0x04 0x02fe3321

ZigBee Specification, Annex F

378 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

