(电子工程专辑版权)来自美国麻省理工学院(MIT)与哈佛大学医学院(Harvard Medical School)的两位教授,合作开发出一种仅有1美分硬币大小的微流体(Microfluidic)装置,其内部的探测器满布微小的碳纳米管,能从血液样本数十亿的健康细胞中识别出单个的癌细胞,还能侦测到尺寸只有40纳米的病毒。
上述两位教授是MIT的Brian Wardle与哈佛大学医学院的Mehmet Toner。他们表示,新发明的微流体装置能让非专业人员进行低成本的户外诊断测试。过去这类微流体检测装置原型,是采用硅柱(silicon posts)作为探测器──并在其上黏附癌细胞抗体──但尽管某一个区域内可能满布数千个硅柱,个别癌细胞有时候还是可能会完全不遭遇抗体就通过微流体通道。
图中直径仅有约30微米的柱体是由中空的碳纳米管所组成,能在血液样本流经微流体检测装置时捕获癌细胞
(来源:Brian Wardle/MIT)
(电子工程专辑版权)据Wardle与Toner的表示,新的设计是用中空的纳米管来取代那些硅柱,他们因此将检测到单个癌细胞的机率增加了八倍。该微流体检测装置是让血液样本流经含有多达1,000亿个碳纳米管的区域,可捕获几乎各种尺寸的可疑细胞──包括微米大小的癌细胞与微小的病毒。
研究人员表示,接下来他们将重新设计该微流体装置,以提供现场的HIV病毒检测。而首款商用微流体检测装置产品预计需要两年的时间才会上市。
点击参考原文:Microfluidics detects cancer with nanotubes
{pagination}
Microfluidics detects cancer with nanotubes
R. Colin Johnson
PORTLAND, Ore.—A Microfluidic device created by a pair of professors from MIT and Harvard Medical School uses an internal detector studded with tiny carbon nanotubes to detect individual cancer cells in blood samples containing billions of healthy cells. About the size of a dime, the microfluidic sensor can also be functionalized to detect viruses as small as 40 nanometers
MIT professor Brian Wardle and Harvard Medical School professor Mehmet Toner say the microfluidic device should enable low-cost tests for diagnoses in-the-field by untrained personnel.
Previous prototypes used silicon posts as detectors—by attaching cancer antibodies to them—but even in a field of thousands of silicon posts, individual cancer cells could sometimes get through the microfluidic channels without encountering an antibody. The new design solves that problem by composing the posts out of hollow nanotube, thereby increasing the likelihood of detecting single cells by over eight times, according to Wardle and Toner.
The MIT/Harvard microfluidic detectors will flow blood samples through a field of up to 100 billion carbon nanotubes, enabling it to trap suspect cells of nearly any size—from micron-sized cancer cells to tiny viruses. Next, the researchers say they will redesign the microfluidic device to provide on-the-spot HIV diagnoses.
The first commercial versions of the MIT/Harvard microfluidic detector will take about two years to come to market, according to the researchers.