广告

研究人员发明整合硅与III-V族材料新方法

2011-03-28 Aileen Zhu 阅读:
丰桥科技大学最近演示了如何将GaN发射器和其他光学材料集成到硅衬底中。

丰桥科技大学(Toyohashi University of Technology)最近演示了如何将GaN发射器和其他光学材料集成到硅衬底中。研究人员称已经解决了硅和III-V族材料晶格失配的问题,从而使未来硅芯片上引入光学部件成为可能。

硅光子学已经验证了大部分的光学功能,包括波导、谐振和开关,但是对于镓、砷、铟以及其他各种氮化物等III-V族材料的光发射依然是一个难题。

现在,丰桥科技(日本爱知县)该项目的负责人Akihiro Wakahara和其同事宣布,已经发明了一种减少硅和II-V族材料之间晶格失配的方法,从而使光发射器,包括激光器,可以集成于硅芯片上。

Wakahara的团队制作了一个一位光电计数器电路以作示意。该电路在同一块芯片上同时具备硅场效应晶体管(FET)和氮磷化镓(GaPN)LED。解决硅和III-V族材料之间晶格失配的关键,是通过使用增强迁移的III–V–N合金生长一层磷化镓(GaP)薄膜外延。由此产生的晶格匹配的Si/GaPN/Si异质结构再采用双腔分子束外延(MBE)法来生长在硅衬底上。

研究人员发明整合硅与III-V族材料新方法(电子工程专辑)

编译:Aileen Zhu

点击参考原文:Researchers integrate silicon, III-V

《电子工程专辑》网站版权所有,谢绝转载

{pagination}

Researchers integrate silicon, III-V

R. Colin Johnson

Integrating gallium nitride emitters and other optical materials onto silicon substrates was recently demonstrated at the Toyohashi University of Technology. Researchers there claim to have solved the lattice mismatch problem between silicon and III-V materials, thereby enabling future integration of optics onto silicon chips.

Silicon photonics has been demonstrated for most optical functions, including waveguides, resonators and switches, but optical emitters has remained a task for III-V materials using gallium, arsenide, indium and their various nitrides.

Now, Akihiro Wakahara, the project team leader at Toyohashi Tech (Aichi, Japan) and colleagues claim to have invented a method of mitigating the lattice mismatch between silicon and III-V materials, thereby enabling optical emitters—including lasers—to be fabricated on silicon chips.

As a demonstration, Wakahara's team constructed a one-bit opto-electronic counter circuit that combines silicon field effect transistors (FETs) alongside gallium phosphide nitride (GaPN) LEDs on a single chip. The key to solving the lattice mismatch between silicon and III-V was accomplished by growing a thin gallium phosphide (GaP) layer using migration-enhanced epitaxy with III–V–N alloys. The resulting lattice matched Si/GaPN/Si hetero-structures were grown on silicon substrates using dual-chamber molecular beam epitaxy (MBE).

编译:Aileen Zhu

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣的文章
相关推荐
    广告
    近期热点
    广告
    广告
    可能感兴趣的话题
    广告
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了