广告

美开发含化合物半导体核的光纤

2011-03-04 阅读:
美国宾州州立大学(Pennsylvania State University)日前宣布开发出内含化合物半导体(compound semiconductor)核心的光纤,号称是全球首创。这种内含硒化锌(zinc-selenide)核心的光纤电缆,据说能支持更广泛的波长,其光子质量也优于目前所使用的非晶核心(amorphous core)光纤。

美国宾州州立大学(Pennsylvania State University)日前宣布开发出内含化合物半导体(compound semiconductor)核心的光纤,号称是全球首创。

这个由宾州州立大学教授John Badding所率领的研究团队,是开发出内含硒化锌(zinc-selenide)核心的光纤电缆,据说能支持更广泛的波长,其光子质量也优于目前所使用的非晶核心(amorphous core)光纤。

“这种光纤的主要优势在于能支持广泛波长,特别是可到长波红外线(specifically);而另一个同样重要的优势在于,人们可以利用其结晶化合物半导体的材料特性。”Badding表示,内含化合物半导体核心的光纤,可实现与目前许多光学芯片相同的放大与波导(waveguide)功能,这是传统的非晶核心光纤无法达到的。

“结晶化合物半导体能包含过渡金属增益介质(transition-metal gain media),这是非晶半导体所不能的。”Badding表示,“该种光纤核心也能制作得比竞争的平面化合物半导体波导更平滑、更匀称,并可提供更优越的光波导特性。”

这种新型光纤最长可支持15微米(micron)的波长,应用范围涵盖更多功能、反抗能力更好的的军事雷达/激光,以及效果更好的医疗或手术用激光,或是能更灵敏地侦测污染物、化学武器等等的环境传感器。

翻译:Judith Cheng

点击进入参考原文:Fiber optics boosted by crystalline core

《电子工程专辑》网站版权所有,谢绝转载

{pagination}

Fiber optics boosted by crystalline core

R. Colin Johnson

Researchers at Pennsylvania State University last week demonstrated what they said are the world's first optical fibers to harbor a compound semiconductor core.

The Penn State researchers, led by professor John Badding, demonstrated fiber optic cables with zinc-selenide cores, which they claim have a wider wavelength range and superior photonic qualities to the amorphous core fibers in use today.

"The key advantage is that these fibers operate over a wide wavelength range, specifically into the long IR and, just as importantly, that one can exploit the materials properties of crystalline compound semiconductors," said Badding

According to Badding, using optical fibers with a compound semiconductor core enabled them to perform many of the same amplification and waveguide functions that today are being demonstrated on optical chips, but were impossible for traditional optical fibers with amorphous cores.

"Crystalline compound semiconductors can host transition-metal gain media, which amorphous semiconductors cannot," said Badding. "The fiber cores can also be made smoother and more symmetric than competing planar compound semiconductor waveguides, potentially giving them superior wave-guiding properties."

Application of the new optical fibers, which can work with wavelengths as long as 15 microns, will range from more versatile radar and better countermeasure lasers for the military, to improved medical lasers or surgeons, to better environmental sensors to measure pollutants or to detect the release of chemical agents by terrorists.

Badding performed the work with doctoral candidate Justin Sparks and in collaboration with fellow professors Rongrui He, Mahesh Krishnamurthi, Venkatraman Gopalan along with Pier Sazio, Anna Peacock, and Noel Healy of the Optoelectronics Research Centre at the University of Southampton. Funding was provided by the National Science Foundation, and the Penn State Univerity Materials Research Science and Engineering Center.

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣的文章
相关推荐
    广告
    近期热点
    广告
    广告
    可能感兴趣的话题
    广告
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了