科学家在液晶(liquid crystals)形成过程中发现其不对称性(asymmetries),以及最终对该特性取得的控制能力,催生了液晶显示器;现在,美国布鲁克海文国家实验室(Brookhaven National Laboratory)的研究人员声称,他们也在超导体(superconductor)的形成过程中发现类似的不对称性,有机会对其进行控制并实现室温运作。
在超级低温的情况下,很多种材料都可做为超导体,也就是以无阻抗的方式导电;不过随着温度升高,无阻抗电流也会衰减。布鲁克海文实验室的研究人员则发现,当超导电性衰减时,不对称性也会同时出现;这意味着工程师有机会能对这个特性进行控制,好在温度升高的同时又维持材料的超导电性。
研究人员表示,他们是用光谱成像扫描穿隧显微镜(spectroscopic imaging scanning tunneling microscopy)测量到电子能轻易地从材料表面跳到显微镜的尖端,并发现材料分子晶格(molecular lattice)内部的不对称性。
接下来,研究人员将探索不对称性的变化是如何影响潜在室温超导体的无阻抗电流,然后他们希望能找到一个能够在较高温度下保持其超导电性的方法。上述研究是由布鲁克海文实验室研究人员与美国宾汉顿大学(Binghamton University )、康乃尔大学(Cornell University),以及日本、韩国的研究机构共同合作进行。
参考原文:Brookhaven takes another shot at room-temp superconductors, by R. Colin Johnson
《电子工程专辑》网站版权所有,谢绝转载
{pagination}
Brookhaven takes another shot at room-temp superconductors
by R. Colin Johnson
The discovery of asymmetries in the formation of liquid crystals eventually led to their control. The result was the liquid-crystal display. Now, researchers at Brookhaven National Laboratory believe they have found similar asymmetries in the formation of superconductors, potentially leading to their control and subsequent room-temperature operation.
At super low temperatures, many materials behave as superconductors, conducting electricity without resistance. As their temperature rises the unrestricted flow of electricity fades. Researchers at Brookhaven Labs (Upton, N.Y.) have cataloged asymmetries that simultaneously arise when superconductivity fades, potentially explaining the behavior in a way that engineers could harness to raise their temperature while maintaining superconducting property.
Using spectroscopic imaging scanning tunneling microscopy, the researchers said they measured the ease with which electrons can jump from the material's surface to the microscope's tip, discovering asymmetries within the molecular lattice of the material.
Next, the researchers said they plan to investigate how the change in asymmetry affects the resistance-less flow of electricity in potential room-temperature superconductors. They then hope to find a method for enabling them to maintain their superconductivity at higher temperatures.
The Brookhaven researchers collaborated with colleagues at Binghamton University, Cornell University, the University of Tokyo, the Advanced Institute of Science and Technology of South Korea, the Riken Laboratory of Japan and Japan’s Institute of Advanced Industrial Science and Technology.