目前,一家公司正在研究的一项技术——网格蛋白(Clathrin),据称,这是一种存在于人体每一个细胞组织中的蛋白质,可能将会成为未来信息处理系统的自组装器,这种系统较现今的计算机电路更小、更快、更便宜。
总部位于波士顿的ExQor Technologies公司表示,经过验证,这种材料可以形成纳米级生物激光器,用于信息传递。该公司预期这项技术将最先被用于医学应用。网格蛋白自组装的精度,以及超小尺寸,利用纳米电子和光子属性可以改进太阳能电池板和电池,而这采用硅材料是不可能实现的。
网格蛋白,一种存在于人体每一个细胞组织中的蛋白质,可能将会成为未来信息处理系统的自组装器。
“我们的网格蛋白支架(clathrin scaffold)应用也是双用途,即——在VLSI光刻技术中的商业应用,以及面向替代能源产生的生物分子电子学和自组装新型光子纳米结构”, ExQor公司创始人Vitaliano表示。
网格蛋白存在于大多数活体动物的细胞中,像一个守门员和信号系统。在 化学物质进入细胞时,通过抱住它们对其进行分类和传送 。单个的网格蛋白子单元中,叫做三脚蛋白体(triskelion),形状像一个三脚架。
在解决方案中,ExQor公司的合成版本自组装一系列三脚蛋白体至20~100纳米直径的包含“待送物”的笼(cage)中。通过将三脚蛋白体和用于识别与病原情况(如癌症或肿瘤)的抗体或其它药剂进行功能分配,网络蛋白笼可以携带药物到特定细胞,然后进入细胞释放药物。
针对生物计算的量子特性
因为网格蛋白是一种体内的天然看门人,它可以轻易进入大部分人体细胞,甚至安全地进入大脑,大脑通常会阻止大的分子药物进入。
在研究网格蛋白的医疗应用时,ExQor公司发现网格蛋白具有对于生物运算应用(包括纳米级激光)非常有用的量子特性。
“当我们最开始研究网格蛋白不对称谐振腔(又称ARC)时,我们没有发现像我们这样规格——低于100纳米的用于激光的其它研究,Vitaliano表示。 “当时大部分科学家认为,在这种规格下的结构不能支持激光,但现在我们知道它可以利用腔量子电动力学。”
纳米激旋旋光性能将率先被用于能源应用,以产生自生光,通过破坏有害有机物来防止工业生物膜的形成。另一个潜在的应用是纳米级光子。研究人员还声称,其它量子计算现象,ExQor公司已就此申请美国专利,将实现新颖的基于自旋、自我组装纳米电子设备,其性能可能超出计划采用传统的无机材料的纳米器件。
“我们的愿望是实现纳米级的生物量子计算,通过使用相同的完全可逆的过程使生物体内的热量最低”,Vitaliano表示。
研究人员还在研究分子间的多量子相干性和分子间的零量子相干性,当前用以提高常规磁核共振成像对比的方法,以及作为用于激活和控制体内的量子效应的标志。
点击下一页:参考原文:Will proteins revolutionize computing?,by R. Colin Johnson
《电子工程专辑》网站版权所有,谢绝转载
{pagination}
Will proteins revolutionize computing?
by R. Colin Johnson
Clathrin, a protein found in every cell of the human body, could become a self-assembler of future information processing systems that are smaller, faster and cheaper than today's computer circuitry, according to a company investigating the technology.
Boston-based ExQor Technologies said it has demonstrated that the material can be formed into nano-sized biolasers suitable for transmitting information. It expects the technology will initially be used in medical applications. The precision of clathrin's self-assembly process, and ultra-small size also could be used to improve solar cells and batteries with nanoscale electronic and photonic properties not possible with silicon.
"Our clathrin scaffolding applications are also dual use, with commercial applications in VLSI lithography, biomolecular electronics and in self-assembling novel photonic nanostructures for alternative energy generation," claimed ExQor founder Franco Vitaliano.
The protein clathrin exists in the cells of most living things as a gate-keeper and signaling system. It sorts and transports chemicals by folding around them as they enter a cell. Individual clathrin subunits, called triskelion, are shaped like a tripod.
In solution, ExQor's synthetic version self-assembles a number of triskelia into 20- to 100-nanometer diameter cages containing "cargo." By functionalizing the triskelia with antibodies or other agents that identify pathogenic conditions like cancer or tissue damage, clathrin cages can carry drugs to specific cells, then pass inside to deliver them.
Quantum properties for biocomputing
Since clathrin is a natural gatekeeper in the body, it can readily access most human cells, even safely entering the brain, which normally prevents large molecule drugs from entering.
While researching clathrin for medical applications, ExQor discovered that the material exhibits quantum properties useful for biocomputing applications, including nanoscale lasing.
"When we were first developing the clathrin asymmetric resonant cavity, or ARC, we could not find any other research into lasing at scales as small as ours--below 100 nanometers," said Vitaliano. "Most scientists at the time believed that structures at that scale could not support lasing, but now we know it can using cavity quantum electrodynamics."
The nano-lasing property will initially be used in energy applications to produce self-generated light to prevent the buildup of industrial biofilm by killing the culprit organisms. Another potential application is nanoscale photonics. The researchers also claim that other quantum computing phenomena, for which ExQor has been granted U.S. patents, will enable novel spin-based, self-assembling nano-electronic devices that could exceed the performance of planned nanoscale devices using traditional inorganic materials.
"Our aspiration is to enable bio-based quantum computing at the nanoscale [level] by using the same completely reversible processes that keep heat to a minimum in living things," said Vitaliano.
The researchers also are investigating intermolecular multiple quantum coherence and intermolecular zero quantum coherence, methods currently used to enhance the contrast of conventional magnetic resonance imaging, and as signposts for initiating and controlling quantum effects in the body.