广告

2.5GHz WiMAX低噪声放大器设计

2009-04-01 程波 胡小华 阅读:
该设计实例中采用了Avago的E-PHEMT(增强型伪高电子迁移率晶体管) ATF-551M4,成功设计了一款低成本、低功耗、并可应用于2.5GHz WiMAX客户端设备(CPE)和基站(BTS)的低噪声放大器。实例中利用了优化的有限负反馈,有效地改善了输入回损与噪声系数的冲突。

WiMAX又称为802.16无线城域网,是又一种为企业和家庭用户提供“最后一英里”的宽带无线连接方案。因其能提供高速的数据业务以及对3G可能构成的威胁,使WiMAX在最近一段时间备受业界关注。

  低噪声放大器是接收机的重要组成部分,它对降低接收链路的噪声系数(NF),提高整个接收机的灵敏度起着至关重要的作用。由于它位于接收机的最前端,所以要求它具有很小的噪声系数。为了抑制后级元件对噪声系数的影响,又要求它具有合适的增益。

  为了满足2.5GHZ WiMAX应用,要求该低噪声放大器在工作频段2.49~2.69GHz内能有>14dB的增益,<1dB的噪声系数。为了降低接收机成本,该低噪声放大器基于低廉的FR4板材,并采用Avago的一款E-PHEMT(增强型伪高电子迁移率晶体管)ATF-551M4设计,ATF-551M4价格较ATF-54143更为便宜,同时ATF-551M4具有更低的漏级偏置电流,能够有效降低接收机功耗。

  

输入匹配电路设计

为了满足系统设计要求的噪声系数,增益,同时获得好的线性度,选取该器件沟道电流(Ids)为30mA,漏极到源极电压为3V,根据ATF-551M4的datasheet3,该E-pHEMT晶体管具有如下典型值:

2.5GHz S11=0.690∠-131.0°,

3.0GHz S11=0.668∠-146.0°,

2.4GHz Fmin= 0.45 Fopt=0.33∠54°Rn/50=0.09。

3.0GHz Fmin= 0.52 Fopt=0.26∠79°Rn/50=0.09。

可以看出最佳输入匹配点S11*与最小噪声匹配点Fopt相差比较远,所以我们不可能同时获得较好的噪声系数和输入回损。实际上,由于LNA离天线比较近,为了保证天线口良好的驻波比,我们对低噪声放大器的输入回损要求比较高,因此,需将低噪声放大器的输入匹配到最佳匹配点S11*。然而,从图2的Smith园图中可以看出,如果匹配到S11*点,此时的NF只有1.25dB,没有达到设计要求。

为了改善输入回损与噪声系数的矛盾,可以通过在源级引入负反馈以改变输入阻抗。我们可以在ATF-551M4的源级增加两段等长的接地线,这两段接地线等效为两个小电感,为ATF-551M4提供负反馈。通过ADS可以对加入源级引线后S11*的变化进行仿真(图1)。设计中我们取引线的宽度为0.25mm,图2中分别是引线长度为0mm,0.6mm,1.0mm情况下的S11*位置,结果表明,在源级引入负反馈能明显的拉近S11*与Fopt的距离,改善输入回损与噪声系数的矛盾。线长为0.6mm时,就能将噪声系数提高到0.85dB以内。

图1:引线长度仿真原理图。
图1:引线长度仿真原理图。

图2 S<SUB>11</SUB>*位置与F<SUB>opt</SUB>
图2 S11*位置与Fopt

然而,负反馈的引入势必会降低增益。为了达到噪声系数要求并且不使增益降低太多,这里选取0.6mm的引线长度。此时S11*=0.371∠114.3°,下面我们利用ADS对输入进行匹配。

由于低噪声放大器的噪声系数只与输入有关,电阻匹配网络适合宽带放大,但是它们要消耗功率并增加噪声,所以一般低噪声放大器都采用近似无损耗的电抗匹配网络。电容因为具有比电感更小的等效串联电阻(ESR),更适合于做输入匹配,对于Avago的这类晶体管,比较常见的是采用串联电容的匹配,但是在实际的电路设计中,串联电容的位置不能随便改变,因此不易于对输入匹配进行精确调试。在这里我们采用并联电容加传输线做输入匹配的结构。这样做的好处是,电路调试中,我们可以随意的改变匹配电容值及电容的位置(相当于改变传输线的长度),以达到很好输入匹配。利用ADS中的smith chart matching工具(图3),可以计算得出具体的输入匹配元件参数如图4所示。

图3:Smith园图输入匹配示意图。
图3:Smith园图输入匹配示意图。

图4 输入匹配电路
图4 输入匹配电路

可以取输入电容C1=1.2pF。传输线的电长度E=65.25°,在ADS的Linecalc工具中带入FR4的电参数,可以计算得出传输线宽度0.5mm,长度为12mm。

  

LNA电路原理图

对于输出匹配电路,这里直接采用了电阻进行宽带匹配。最终的电路原理图如图5所示。

图5 LNA原理图
图5 LNA原理图

C1,C3,C10是隔直电容。C2用于输入匹配。R8,R9是输出匹配,同时也引入了负反馈,提高了低噪放的稳定性。C6,C9为带内射频信号旁路电容,R5,R7,C4,C5,C7,C8用于抑制低频信号,L1,L2提供直流馈电,LL1,LL2为两个源级接地线,R1,R2,R3,R4,Q2给ATF551M4提供直流偏置。具体的电路元件参数见表1。

表1:优化后的元器件参数。
表1:优化后的元器件参数。

ADS仿真结果及实际测试数据

根据原理图,利用ADS对电路进行S参数仿真,为了提高仿真的准确性,电路元器件都采用了厂商提供的等效模型,同时将FR4的板材特性参数代入微带线模型中。图6是用于ADS的仿真原理图。

图6 低噪声放大器ADS仿真原理图
图6 低噪声放大器ADS仿真原理图

通过ADS仿真及最后的实际电路测试,我们发现该低噪声放大器能够较好的满足设计要求。图7-10是最后的ADS仿真及实际测试结果对比图。图中可以看出,实际测试数据与仿真结果比较一致。该输入回损在2.49~2.69GHz能够达到-15dB以上,噪声系数<0.95dB。增益>15dB,P1dB>0dB,OIP3>23dB。

  

 

图7 稳定性仿真结果与测试数据比较
图7 稳定性仿真结果与测试数据比较

图8 输入回损仿真结果与测试数据比较
图8 输入回损仿真结果与测试数据比较

图9 噪声系数仿真结果与测试数据比较
图9 噪声系数仿真结果与测试数据比较

图10 增益仿真结果与测试数据比较
图10 增益仿真结果与测试数据比较

结论

基于ADS仿真及实测数据,该低噪声放大器具有很好噪声系数与增益,并且具有良好的线性度,完全可以应用于WiMAX客户端设备和基站,并且该电路设计方法适用于其他同类型的低噪声放大器的设计。

 

作者:程波 胡小华

射频工程师

摩托罗拉中国研发中心 

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣的文章
相关推荐
    广告
    近期热点
    广告
    广告
    可能感兴趣的话题
    广告
    广告
    向右滑动:上一篇 向左滑动:下一篇 我知道了